Internet-Draft | Guidelines for HRPC | October 2022 |
Grover & ten Oever | Expires 7 April 2023 | [Page] |
This document sets guidelines for human rights considerations for developers working on network protocols and architectures, similar to the work done on the guidelines for privacy considerations [RFC6973]. This is an updated version of the guidelines for human rights considerations in [RFC8280].¶
This document is not an Internet Standards Track specification; it is published for informational purposes.¶
This informational document has consensus for publication from the Internet Research Task Force (IRTF) Human Right Protocol Considerations Research (HRPC) Group. It has been reviewed, tried, and tested by both by the research group as well as by researchers and practitioners from outside the research group. The research group acknowledges that the understanding of the impact of Internet protocols and architecture on society is a developing practice and is a body of research that is still in development.¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 7 April 2023.¶
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
This document outlines a set of human rights protocol considerations for protocol developers. It provides questions engineers should ask themselves when developing or improving protocols if they want to understand how their decisions can potentially influence the exercise of human rights on the Internet. It should be noted that the impact of a protocol cannot solely be deduced from its design, but its usage and implementation should also be studied to form a full protocol human rights impact assessment.¶
The questions are based on the research performed by the Human Rights Protocol Considerations (HRPC) research group which has been documented before these considerations. The research establishes that human rights relate to standards and protocols, and offers a common vocabulary of technical concepts that influence human rights and how these technical concepts can be combined to ensure that the Internet remains an enabling environment for human rights. With this, the contours of a model for developing human rights protocol considerations has taken shape.¶
This document is an iteration of the guidelines that can be found in [RFC8280]. The methods for conducting human rights reviews (Section 3.2), and guidelines for human rights considerations (Section 3.3) in this document are being tested for relevance, accuracy, and validity. The understanding of what human rights are is based on the Universal Declaration of Human Rights [UDHR] and subsequent treaties that jointly form the body of international human rights law [UNHR].¶
This document does not provide a detailed taxonomy of the nature of (potential) human rights violations, whether direct or indirect, long-term or short-term, certain protocol choices might present. In part because this is highly context-dependent, and in part, because this document aims to provide a practical set of guidelines. However, further research in this field would definitely benefit developers and implementers.¶
This document is not an Internet Standards Track specification; it is published for informational purposes.¶
This informational document has consensus for publication from the Internet Research Task Force (IRTF) Human Right Protocol Considerations Research Group. It has been reviewed, tried, and tested by both by the research group as well as by researchers and practitioners from outside the research group. The HRPC research group acknowledges that the understanding of the impact of Internet protocols and architecture on society is a developing practice and is a body of research that is still in development.¶
Threats to the exercise of human rights on the Internet come in many forms. Protocols and standards may harm or enable the right to freedom of expression, right to freedom of information, right to non-discrimination, right to equal protection, right to participate in cultural life, arts and science, right to freedom of assembly and association, right to privacy, and the right to security. An end-user who is denied access to certain services or content may be unable to disclose vital information about the malpractices of a government or other authority. A person whose communications are monitored may be prevented or dissuaded from exercising their right to freedom of association or participate in political processes [Penney]. In a worst-case scenario, protocols that leak information can lead to physical danger. A realistic example to consider is when individuals perceived as threats to the state are subjected to torture, extra-judicial killing or detention on the basis of information gathered by state agencies through the monitoring of network traffic.¶
This document presents several examples of how threats to human rights materialize on the Internet. This threat modeling is inspired by [RFC6973] Privacy Considerations for Internet Protocols, which is based on security threat analysis. This method is a work in progress and by no means a perfect solution for assessing human rights risks in Internet protocols and systems. Certain specific human rights threats are indirectly considered in Internet protocols as part of the security considerations [BCP72], but privacy considerations [RFC6973] or reviews, let alone human rights impact assessments of protocols, are neither standardized nor implemented.¶
Many threats, enablers, and risks are linked to different rights. This is not surprising if one takes into account that human rights are interrelated, interdependent, and indivisible. Here, however, we're not discussing all human rights because not all human rights are relevant to information and communication technologies (ICTs) in general and protocols and standards in particular [Bless]: "The main source of the values of human rights is the International Bill of Human Rights that is composed of the Universal Declaration of Human Rights [UDHR] along with the International Covenant on Civil and Political Rights [ICCPR] and the International Covenant on Economic, Social and Cultural Rights [ICESCR]. In the light of several cases of Internet censorship, the UN Human Rights Council Resolution 20/8 was adopted in 2012, affirming that "the same rights that people have offline must also be protected online." [UNHRC2016] In 2015, the Charter of Human Rights and Principles for the Internet [IRP] was developed and released. According to these documents, some examples of human rights relevant for ICT systems are human dignity (Art. 1 UDHR), non-discrimination (Art. 2), rights to life, liberty and security (Art. 3), freedom of opinion and expression (Art. 19), freedom of assembly and association (Art. 20), rights to equal protection, legal remedy, fair trial, due process, presumed innocent (Art. 7-11), appropriate social and international order (Art. 28), participation in public affairs (Art. 21), participation in cultural life, protection of the moral and material interests resulting from any scientific, literary or artistic production of which [they are] the author (Art. 27), and privacy (Art. 12)." A partial catalog of human rights related to Information and Communications Technologies, including economic rights, can be found in [Hill2014].¶
This is by no means an attempt to exclude specific rights or prioritize some rights over others.¶
Ideally, protocol developers and collaborators should incorporate human rights considerations into the design process itself (see Guidelines for human rights considerations). This section provides guidance on how to conduct a human rights review, i.e., gauge the impact or potential impact of a protocol or standard on human rights.¶
Human rights reviews can take place at different stages of the development process of an Internet-Draft. Generally speaking, it is easier to influence the development of a technology at earlier stages than at later stages. This does not mean that reviews at last-call are not relevant, but they are less likely to result in significant changes in the reviewed document.¶
Methods for analyzing technology for specific human rights impacts are still quite nascent. Currently, five methods have been explored by the Human Rights Review Team, often in conjunction with each other:¶
This analysis of Internet-Drafts uses the model as described in section 3.3. The outlined categories and questions can be used to review an Internet-Draft. The advantage of this is that it provides a known overview, and document authors can go back to this document as well as [RFC8280] to understand the background and the context.¶
When reviewing an Internet-Draft, specific human rights impacts can become apparent by doing a close reading of the draft and seeking to understand how it might affect networks or society. While less structured than the straight use of the human rights considerations model, this analysis may lead to new speculative understandings of links between human rights and protocols.¶
Interviews with document authors, active members of the Working Group, or experts in the field can help explore the characteristics of the protocol and its effects. There are two main advantages to this approach: one the one hand, it allows the reviewer to gain a deeper understanding of the (intended) workings of the protocol; on the other hand, it also allows for the reviewer to start a discussion with experts or even document authors, which can help the review gain traction when it is published.¶
Protocols impact users of the Internet. Interviews can help the reviewer understand how protocols affect the people that use the protocols. Since human rights are best understood from the perspective of the rights-holder, this approach will improve the understanding of the real world effects of the technology. At the same time, it can be hard to attribute specific changes to a particular protocol, this is of course even harder when a protocol has not been (widely) deployed.¶
The reality of deployed protocols can be at odds with the expectations during the protocol design and development phase [RFC8980]. When a specification already has associated running code, the code can be analyzed either in an experimental setting or on the Internet where its impact can be observed. In contrast to reviewing the draft text, this approach can allow the reviewer to understand how the specifications works in practice, and potentially what unknown or unexpected effects the technology has.¶
This section provides guidance for document authors in the form of a questionnaire about protocols and how technical decisions can shape the exercise of human rights. The questionnaire may be useful at any point in the design process, particularly after the document authors have developed a high-level protocol model as described in [RFC4101]. These guidelines do not seek to replace any existing referenced specifications, but rather contribute to them and look at the design process from a human rights perspective.¶
Protocols and Internet Standards might benefit from a documented discussion of potential human rights risks arising from potential misapplications of the protocol or technology described in the Request For Comments (RFC). This might be coupled with an Applicability Statement for that RFC.¶
Note that the guidance provided in this section does not recommend specific practices. The range of protocols developed in the IETF is too broad to make recommendations about particular uses of data or how human rights might be balanced against other design goals. However, by carefully considering the answers to the following questions, document authors should be able to produce a comprehensive analysis that can serve as the basis for discussion on whether the protocol adequately takes specific human rights threats into account. This guidance is meant to help the thought process of a human rights analysis; it does not provide specific directions for how to write a human rights considerations section (following the example set in [RFC6973]).¶
In considering these questions, authors will need to be aware of the potential of technical advances or the passage of time to undermine protections. In general, considerations of rights are likely to be more effective if they are considered given a purpose and specific use cases, rather than as abstract absolute goals.¶
Also note that while the section uses the word, 'protocol', the principles identified in these questions may be applicable to other types of solutions (extensions to existing protocols, architecture for solutions to specific problems, etc.).¶
Question(s): Does your protocol add application-specific functions to intermediary nodes? Could this functionality be added to end nodes instead of intermediary nodes?¶
Is your protocol optimized for low bandwidth and high latency connections? Could your protocol also be developed in a stateless manner?¶
Explanation: The end-to-end principle [Saltzer] holds that certain functions can and should be performed at 'ends' of the network. [RFC1958] states "that in very general terms, the community believes that the goal is connectivity [...] and the intelligence is end to end rather than hidden in the network." Generally speaking, it is easier to attain reliability of data transmissions with computation at endpoints rather than at intermediary nodes.¶
Also considering the fact that network quality and conditions vary across geography and time, it is also important to design protocols such that they are reliable even on low bandwidth and high latency connections.¶
Example: Encrypting connections, like done with HTTPS, can add a significant network overhead and consequently make web resources less accessible to those with low bandwidth and/or high latency connections. [HTTPS-REL] Encrypting traffic is a net positive for privacy and security, and thus protocol designers can acknowledge the tradeoffs of connectivity made by such decisions.¶
Impacts:¶
Question(s): Is your protocol fault tolerant? Does it downgrade gracefully, i.e., with mechanisms for fallback and/or notice? Can your protocol resist malicious degradation attempts? Do you have a documented way to announce degradation? Do you have measures in place for recovery or partial healing from failure? Can your protocol maintain dependability and performance in the face of unanticipated changes or circumstances?¶
Explanation: Reliability and resiliency ensures that a protocol will execute its function consistently and error resistant as described, and function without unexpected result. Measures for reliability in protocols assure users that their intended communication was successfully executed.¶
A system that is reliable degrades gracefully and will have a documented way to announce degradation. It will also have mechanisms to recover from failure gracefully, and if applicable, will allow for partial healing.¶
It is important here to draw a distinction between random degradation and malicious degradation. Many current attacks against TLS [RFC8446], for example, exploit TLS' ability to gracefully downgrade to non-secure cipher suites -- from a functional perspective, this is useful; from a security perspective, this can be disastrous. As with confidentiality, the growth of the Internet and fostering innovation in services depends on users having confidence and trust [RFC3724] in the network. For reliability, it is necessary that services notify the users if a delivery fails. In the case of real-time systems in addition to the reliable delivery the protocol needs to safeguard timeliness.¶
Example: In the modern IP stack structure, a reliable transport layer requires an indication that transport processing has successfully completed, such as given by TCP's ACK message [RFC0793], and not simply an indication from the IP layer that the packet arrived. Similarly, an application layer protocol may require an application-specific acknowledgment that contains, among other things, a status code indicating the disposition of the request (See [RFC3724]).¶
Impacts:¶
Question(s): If your protocol impacts packet handling, does it use user data (packet data that is not included in the header)? Is it making decisions based on the payload of the packet? Does your protocol prioritize certain content or services over others in the routing process? Is the protocol transparent about the prioritization that is made (if any)?¶
Explanation: Content agnosticism refers to the notion that network traffic is treated identically regardless of payload, with some exceptions where it comes to effective traffic handling, for instance where it comes to delay-tolerant or delay-sensitive packets, based on the header. If there is any prioritization based on the content or metadata of the protocol, the protocol should be transparent about such information and reasons thereof.¶
Example: Content agnosticism prevents payload-based discrimination against packets. This is important because changes to this principle can lead to a two-tiered Internet, where certain packets are prioritized over others on the basis of their content. Effectively this would mean that although all users are entitled to receive their packets at a certain speed, some users become more equal than others.¶
Impacts:¶
Question(s): Does your protocol uphold the standards of internationalization? Have you made any concrete steps towards localizing your protocol for relevant audiences?¶
Explanation: Localization refers to the adaptation of a product, application or document content to meet the language, cultural and other requirements of a specific target market (a locale) [W3Ci18nDef]. For our purposes, it can be described as the practice of translating an implementation to make it functional in a specific language or for users in a specific locale (see Internationalization).¶
Example: The Internet is a global medium, but many of its protocols and products are developed with a certain audience in mind, that often share particular characteristics like knowing how to read and write in American Standard Code for Information Interchange (ASCII) and knowing English. This limits the ability of a large part of the world's online population from using the Internet in a way that is culturally and linguistically accessible. An example of a standard that has taken into account the view that individuals like to have access to data in their native language can be found in [RFC5646]. The document describes a way to label information with an identifier for the language in which it is written. And this allows information to be presented and accessed in more than one language.¶
Impacts:¶
Question(s): Does your protocol or specification define text string elements, in the payload or headers, that have to be understood or entered by humans? Does your specification allow Unicode? If so, do you accept texts in one charset (which must be UTF-8), or several (which is dangerous for interoperability)? If character sets or encodings other than UTF-8 are allowed, does your specification mandate a proper tagging of the charset? Did you have a look at [RFC6365]?¶
Explanation: Internationalization refers to the practice of making protocols, standards, and implementations usable in different languages and scripts (see Localization). In the IETF, internationalization means to add or improve the handling of non-ASCII text in a protocol. [RFC6365] A different perspective, more appropriate to protocols that are designed for global use from the beginning, is the definition used by the World Wide Web Consortium (W3C):¶
"Internationalization is the design and development of a product, application or document content that enables easy localization for target audiences that vary in culture, region, or language." {{W3Ci18nDef}}¶
Many protocols that handle text only handle one charset (US-ASCII), or leave the question of what coded character set and encoding are used up to local guesswork (which leads, of course, to interoperability problems). If multiple charsets are permitted, they must be explicitly identified [RFC2277]. Adding non-ASCII text to a protocol allows the protocol to handle more scripts, hopefully representing users across the world. In today's world, that is normally best accomplished by allowing Unicode encoded in UTF-8 only.¶
In the current IETF policy [RFC2277], internationalization is aimed at user-facing strings, not protocol elements, such as the verbs used by some text-based protocols. (Do note that some strings are both content and protocol elements, such as identifiers.) Given the IETF's mission to make the Internet a global network of networks, [RFC3935] developers should ensure that protocols work with languages apart from English and character sets apart from Latin characters. It is therefore crucial that at the very least, the content carried by the protocol can be in any script, and that all scripts are treated equally.¶
Example: See localization¶
Impacts:¶
Question(s): Is your protocol fully documented in a way that it could be easily implemented, improved, built upon and/or further developed? Do you depend on proprietary code for the implementation, running or further development of your protocol? Does your protocol favor a particular proprietary specification over technically-equivalent competing specification(s), for instance by making any incorporated vendor specification "required" or "recommended" [RFC2026]? Do you normatively reference another standard that is not available without cost (and could you do without it)? Are you aware of any patents that would prevent your standard from being fully implemented [RFC8179] [RFC6701]?¶
Explanation: The Internet was able to be developed into the global network of networks because of the existence of open, non-proprietary standards [Zittrain]. They are crucial for enabling interoperability. Yet, open standards are not explicitly defined within the IETF. On the subject, [RFC2026] states: "Various national and international standards bodies, such as ANSI, ISO, IEEE, and ITU-T, develop a variety of protocol and service specifications that are similar to Technical Specifications defined at the IETF. National and international groups also publish "implementors' agreements" that are analogous to Applicability Statements, capturing a body of implementation-specific detail concerned with the practical application of their standards. All of these are considered to be "open external standards" for the purposes of the Internet Standards Process." Similarly, [RFC3935] does not define open standards but does emphasize the importance of an "open process", i.e., "any interested person can participate in the work, know what is being decided, and make [their] voice heard on the issue."¶
Open standards (and open source software) allow users to glean information about how the tools they are using work, including the tools' security and privacy properties. They additionally allow for permissionless innovation, which is important to maintain the freedom and ability to freely create and deploy new protocols on top of the communications constructs that currently exist. It is at the heart of the Internet as we know it, and to maintain its fundamentally open nature, we need to be mindful of the need for developing open standards.¶
All standards that need to be normatively implemented should be freely available and with reasonable protection for patent infringement claims, so it can also be implemented in open source or free software. Patents have often held back open standardization or been used against those deploying open standards, particularly in the domain of cryptography [newegg]. An exemption of this is sometimes made when a protocol is standardized that normatively relies on specifications produced by others standards development organizations (SDOs) that are not freely available. Patents in open standards or in normative references to other standards should have a patent disclosure [notewell], royalty-free licensing [patentpolicy], or some other form of fair, reasonable and non-discriminatory terms.¶
Example: [RFC6108] describes a system for providing critical end-user notifications to web browsers, which has been deployed by Comcast, an Internet Service Provider (ISP). Such a notification system is being used to provide near-immediate notifications to customers, such as to warn them that their traffic exhibits patterns that are indicative of malware or virus infection. There are other proprietary systems that can perform such notifications, but those systems utilize Deep Packet Inspection (DPI) technology. In contrast, that document describes a system that does not rely upon DPI, and is instead based on open IETF standards and open source applications.¶
Impacts:¶
Question(s): Does your protocol support heterogeneity by design? Does your protocol allow for multiple types of hardware? Does your protocol allow for multiple types of application protocols? Is your protocol liberal in what it receives and handles? Will it remain usable and open if the context changes?¶
Explanation: The Internet is characterized by heterogeneity on many levels: devices and nodes, router scheduling algorithms and queue management mechanisms, routing protocols, levels of multiplexing, protocol versions and implementations, underlying link layers (e.g., point-to-point, multi-access links, wireless, FDDI, etc.), in the traffic mix and in the levels of congestion at different times and places. Moreover, as the Internet is composed of autonomous organizations and ISPs, each with their own separate policy concerns, there is a large heterogeneity of administrative domains and pricing structures. As a result, the heterogeneity principle proposed in [RFC1958] needs to be supported by design [FIArch].¶
Heterogeneity support in protocols can thus enable a wide range of devices and (by extension) users to participate on the network.¶
Example: Heterogeneity is inevitable and needs be supported by design. Multiple types of hardware must be allowed for (e.g., transmission speeds differing by at least 7 orders of magnitude, various computer word lengths, and hosts ranging from memory-starved microprocessors up to massively parallel supercomputers). Multiple types of application protocols must be allowed for, ranging from the simplest such as remote login up to the most complex such as commit protocols for distributed databases. [RFC1958].¶
Impacts:¶
Question(s): Does your protocol maintain, assure and/or verify the accuracy of payload data? Does your protocol maintain and assure the consistency of data? Does your protocol in any way allow for the data to be (intentionally or unintentionally) altered?¶
Explanation: Integrity refers to the maintenance and assurance of the accuracy and consistency of data to ensure it has not been (intentionally or unintentionally) altered.¶
Example: Integrity verification of data is important to prevent vulnerabilities and attacks from on-path attackers. These attacks happen when a third party (often for malicious reasons) intercepts a communication between two parties, inserting themselves in the middle changing the content of the data. In practice this looks as follows:¶
Alice wants to communicate with Bob. Alice sends a message to Bob, which Corinne intercepts and modifies. Bob cannot see that the data from Alice was altered by Corinne. Corinne intercepts and alters the communication as it is sent between Alice and Bob. Corinne is able to control the communication content.¶
Impacts:¶
Question(s): Do you have sufficient measures to confirm the truth of an attribute of a single piece of data or entity? Can the attributes get garbled along the way (see security)? If relevant, have you implemented IPsec, DNS Security (DNSSEC), HTTPS and other Standard Security Best Practices?¶
Explanation: Authenticity ensures that data does indeed come from the source it claims to come from. This is important to prevent certain attacks or unauthorized access and use of data.¶
At the same time, authentication should not be used as a way to prevent heterogeneity support, as is often done for vendor lock-in or digital rights management.¶
Example: Authentication of data is important to prevent vulnerabilities, and attacks from on-path attackers. These attacks happen when a third party (often for malicious reasons) intercepts a communication between two parties, inserting themselves in the middle and posing as both parties. In practice this looks as follows:¶
Alice wants to communicate with Bob. Alice sends data to Bob. Corinne intercepts the data sent to Bob. Corinne reads (and potentially alters) the message to Bob. Bob cannot see that the data did not come from Alice but from Corinne.¶
With proper authentication, the scenario would be as follows:¶
Alice wants to communicate with Bob. Alice sends data to Bob. Corinne intercepts the data sent to Bob. Corinne reads and alters the message to Bob. Bob can see that the data did not come from Alice.¶
Impacts:¶
Question(s): Does the protocol expose the transmitted data over the wire? Does the protocol expose information related to identifiers or data? If so, what does it reveal to each protocol entity (i.e., recipients, intermediaries, and enablers) [RFC6973]? What options exist for protocol implementers to choose to limit the information shared with each entity? What operational controls are available to limit the information shared with each entity?¶
What controls or consent mechanisms does the protocol define or require before personal data or identifiers are shared or exposed via the protocol? If no such mechanisms or controls are specified, is it expected that control and consent will be handled outside of the protocol?¶
Does the protocol provide ways for initiators to share different pieces of information with different recipients? If not, are there mechanisms that exist outside of the protocol to provide initiators with such control?¶
Does the protocol provide ways for initiators to limit the sharing or express individuals' preferences to recipients or intermediaries with regard to the collection, use, or disclosure of their personal data? If not, are there mechanisms that exist outside of the protocol to provide users with such control? Is it expected that users will have relationships that govern the use of the information (contractual or otherwise) with those who operate these intermediaries? Does the protocol prefer encryption over clear text operation?¶
Explanation: Confidentiality refers to keeping your data secret from unintended listeners [BCP72]. The growth of the Internet depends on users having confidence that the network protects their personal data [RFC1984]. The possibility of pervasive monitoring and surveillance undermines users' trust, and can be mitigated by ensuring confidentiality, i.e., passive attackers should gain little or no information from observation or inference of protocol activity. [RFC7258][RFC7624].¶
Example: Protocols that do not encrypt their payload make the entire content of the communication available to the idealized attacker along their path. Following the advice in [RFC3365], most such protocols have a secure variant that encrypts the payload for confidentiality, and these secure variants are seeing ever-wider deployment. A noteworthy exception is DNS [RFC1035], as DNSSEC [RFC4033] does not have confidentiality as a requirement. This implies that, in the absence of the use of more recent standards like DNS over TLS [RFC7858] or DNS over HTTPS [RFC8484], all DNS queries and answers generated by the activities of any protocol are available to the attacker. When store-and-forward protocols are used (e.g., SMTP [RFC5321]), intermediaries leave this data subject to observation by an attacker that has compromised these intermediaries, unless the data is encrypted end-to-end by the application-layer protocol or the implementation uses an encrypted store for this data [RFC7624].¶
Impacts:¶
Question(s): Did you have a look at Guidelines for Writing RFC Text on Security Considerations [BCP72]? Have you found any attacks that are somewhat related to your protocol/specification, yet considered out of scope of your document? Would these attacks be pertinent to the human rights enabling features of the Internet (as described throughout this document)?¶
Explanation: Security is not a single monolithic property of a protocol or system, but rather a series of related but somewhat independent properties. Not all of these properties are required for every application. Since communications are carried out by systems and access to systems is through communications channels, security goals obviously interlock, but they can also be independently provided. [BCP72].¶
Typically, any protocol operating on the Internet can be the target of passive attacks (when the attacker can access and read packets on the network); active attacks (when an attacker is capable of writing information to the network packets). [BCP72]¶
Impacts:¶
Question(s): Did you have a look at the Guidelines in the Privacy Considerations for Internet Protocols [RFC6973] section 7? Does your protocol maintain the confidentiality of metadata? Could your protocol counter traffic analysis? Does your protocol adhere to data minimization principles? Does your document identify potentially sensitive data logged by your protocol and/or for how long that needs to be retained for technical reasons?¶
Explanation: Privacy refers to the right of an entity (normally a person), acting on its own behalf, to determine the degree to which it will interact with its environment, including the degree to which the entity is willing to share its personal information with others. [RFC4949]. If a protocol provides insufficient privacy protection it may have a negative impact on freedom of expression as users self-censor for fear of surveillance, or find themselves unable to express themselves freely.¶
Impacts:¶
Question(s): Does the protocol collect personally derived data? Does the protocol generate or process anything that can be, or be tightly correlated with, personally identifiable information? Does the protocol utilize data that is personally-derived, i.e. derived from the interaction of a single person, or their device or address? If yes, can the protocol be implemented in a way that does not rely on personally identifiable information? If not, does the specification describe how any such data be handled? Have you considered the Privacy Considerations for Internet Protocols [RFC6973], especially section 6.1.2?¶
Explanation: Pseudonymity means using a pseudonym instead of one's "real" name. There are many reasons for users to use pseudonyms, for instance to: hide their gender, protect themselves against harassment, protect their families' privacy, frankly discuss sexuality, or develop an artistic or journalistic persona without repercussions from an employer, (potential) customers, or social surrounding. [geekfeminism] The difference between anonymity and pseudonymity is that a pseudonym often is persistent. "Pseudonymity is strengthened when less personal data can be linked to the pseudonym; when the same pseudonym is used less often and across fewer contexts; and when independently chosen pseudonyms are more frequently used for new actions (making them, from an observer's or attacker's perspective, unlinkable)." [RFC6973]¶
Pseudonymity - the ability to use a persistent identifier not linked to one's offline identity - is an important feature for many end-users, as it allows them different degrees of disguised identity and privacy online. This can allow an enabling environment for users to exercise other rights, including freedom of expression and political participation, without fear or direct identification or discrimination.¶
Example: Generally, pseudonymous identifiers cannot be simply reverse engineered. Some early approaches took approaches such as simple hashing of IP addresses, but these could then be simply reversed by generating a hash for each potential IP address and comparing it to the pseudonym.¶
Example: There are also efforts for application layer protocols, like Oblivious DNS Over HTTPS, [draft-pauly-dprive-oblivious-doh] that can separate identifiers from requests.¶
Impacts:¶
Question(s): Does your protocol make use of persistent identifiers? Can it be done without them? Did you have a look at the Privacy Considerations for Internet Protocols [RFC6973], especially section 6.1.1 of that document?¶
Explanation: Anonymity refers to the condition of an identity being unknown or concealed [RFC4949]. Even though full anonymity is hard to achieve, it is a non-binary concept. Making pervasive monitoring and tracking harder is important for many users as well as for the IETF [RFC7258]. Achieving a higher level of anonymity is an important feature for many end-users, as it allows them different degrees of privacy online. Anonymity is an inherent part of the right to freedom of opinion and expression and the right to privacy. Avoid adding identifiers, options or configurations that create or might lead to patterns or regularities that are not explicitly required by the protocol.¶
If your protocol collects data and seeks to distribute it to more entities than the originally-intended recipients (see [RFC6235] as an example), you should anonymize the data, but keep in mind that "anonymizing" data is notoriously hard. For example, just dropping the last byte of an IP address does not "anonymize" data.¶
If your protocol allows for identity management, there should be a clear barrier between the identities to ensure that they cannot (easily) be associated with each other.¶
A protocol that uses data that could help identify a sender (items of interest) should be protected from third parties. For instance, if one wants to hide the source/destination IP addresses of a packet, the use of IPsec in tunneling mode (e.g., inside a virtual private network) can be helpful to protect from third parties likely to eavesdrop packets exchanged between the tunnel endpoints.¶
Example: An example is Dynamic Host Configuration Protocol (DHCP) where sending a persistent identifier as the client name was not mandatory but, in practice, done by many implementations, before [RFC7844].¶
Impacts:¶
Question(s): Can your protocol contribute to filtering? Could it implemented to censor data or services? Could it be designed to ensure this doesn't happen? Does your protocol make it apparent or transparent when access to a resource is restricted and the reasons why it is restricted? Does your protocol introduce new identifiers or reuse existing identifiers (e.g., MAC addresses) that might be associated with persons or content?¶
Explanation: Governments and service providers block or filter content or traffic, often without the knowledge of end-users. [RFC7754] See [draft-irtf-pearg-censorship] for a survey of censorship techniques employed across the world, which lays out protocol properties that have been exploited to censor access to information. Censorship resistance refers to the methods and measures to prevent Internet censorship.¶
Example: Identifiers of content exposed within a protocol might be used to facilitate censorship, as in the case of Application Layer based censorship, which affects protocols like HTTP. In HTTP, denial or restriction of access can be made apparent by the use of status code 451, which allows server operators to operate with greater transparency in circumstances where issues of law or public policy affect their operation [RFC7725].¶
If a protocol potentially enables censorship, protocol designers should strive towards creating error codes that capture different scenarios (blocked due to administrative policy, unavailable because of legal requirements, etc.) to minimize ambiguity for end-users.¶
In the development of the IPv6 protocol, it was discussed to embed a Media Access Control (MAC) address into unique IP addresses. This would make it possible for eavesdroppers and other information collectors to identify when different addresses used in different transactions actually correspond to the same node. This is why standardization efforts like Privacy Extensions for Stateless Address Autoconfiguration in IPv6 [RFC4941] and MAC address randomization [draft-zuniga-mac-address-randomization] have been pursued.¶
Impacts:¶
Question(s): Are the effects of your protocol fully and easily comprehensible, including with respect to unintended consequences of protocol choices?¶
Explanation: Certain technical choices may have unintended consequences.¶
Example: Lack of authenticity may lead to lack of integrity and negative externalities, of which spam is an example. Lack of data that could be used for billing and accounting can lead to so-called "free" arrangements which obscure the actual costs and distribution of the costs, for example the barter arrangements that are commonly used for Internet interconnection; and the commercial exploitation of personal data for targeted advertising which is the most common funding model for the so-called "free" services such as search engines and social networks. Other unexpected outcomes might not be technical, but rather architectural, social or economic.¶
Impacts:¶
Question(s): Is your protocol written in such a way that it would be easy for other protocols to be developed on top of it, or to interact with it? Does your protocol impact permissionless innovation? (See Open Standards)¶
Explanation: Adaptability is closely interrelated with permissionless innovation: both maintain the freedom and ability to freely create and deploy new protocols on top of the communications constructs that currently exist. It is at the heart of the Internet as we know it, and to maintain its fundamentally open nature, we need to be mindful of the impact of protocols on maintaining or reducing permissionless innovation to ensure the Internet can continue to develop.¶
Adaptability and permissionless innovation can be used to shape information networks as preferenced by groups of users. Furthermore, a precondition of adaptability is the ability of the people who can adapt the network to be able to know and understand the network. This is why adaptability and permissionless innovation are inherently connected to the right to education and the right to science as well as the right to freedom of assembly and association as well as the right to freedom of expression. Since it allows the users of the network to determine how to assemble, collaborate, and express themselves.¶
Example: WebRTC generates audio and/or video data. In order to ensure that WebRTC can be used in different locations by different parties, it is important that standard Javascript application programming interfaces (APIs) are developed to support applications from different voice service providers. Multiple parties will have similar capabilities, in order to ensure that all parties can build upon existing standards these need to be adaptable, and allow for permissionless innovation.¶
Impacts:¶
Question(s): Is your protocol designed to provide an enabling environment for all? Have you looked at the W3C Web Accessibility Initiative for examples and guidance?¶
Explanation: Sometimes in the design of protocols, websites, web technologies, or web tools, barriers are created that exclude people from using the Web. The Internet should be designed to work for all people, whatever their hardware, software, language, culture, location, or physical or mental ability. When the Internet technologies meet this goal, it will be accessible to people with a diverse range of hearing, movement, sight, and cognitive ability. [W3CAccessibility]¶
Example: The HTML protocol as defined in [HTML5] specifically requires that every image must have an alt attribute (with a few exceptions) to ensure images are accessible for people that cannot themselves decipher non-text content in web pages.¶
Another example is the work done in the AVT and AVTCORE working groups in the IETF that enables text conversation in multimedia, text telephony, wireless multimedia and video communications for sign language and lip-reading (i.e., [RFC9071]).¶
Impacts:¶
Question(s): Can your protocol be implemented without a single point of control? If applicable, can your protocol be deployed in a federated manner? Does your protocol create additional centralized points of control?¶
Explanation: Decentralization is one of the central technical concepts of the architecture of the Internet, and is embraced as such by the IETF [RFC3935]. It refers to the absence or minimization of centralized points of control, a feature that is assumed to make it easy for new users to join and new uses to unfold [Brown]. It also reduces issues surrounding single points of failure, and distributes the network such that it continues to function even if one or several nodes are disabled. With the commercialization of the Internet in the early 1990s, there has been a slow move away from decentralization, to the detriment of the technical benefits of having a decentralized Internet. For a more detailed discussion of this topic, please see [arkkoetal].¶
Example: The bits traveling the Internet are increasingly susceptible to monitoring and censorship, from both governments and ISPs, as well as third (malicious) parties. The ability to monitor and censor is further enabled by the increased centralization of the network that creates central infrastructure points that can be tapped into. The creation of peer-to-peer networks and the development of voice-over-IP protocols using peer-to-peer technology in combination with distributed hash table (DHT) for scalability are examples of how protocols can preserve decentralization [Pouwelse].¶
Impacts:¶
Question(s): Can your protocol facilitate a negatively impacted party's right to remedy without disproportionately impacting other parties' human rights, especially their right to privacy?¶
Explanation: Providing access to remedy by states and corporations is a part of the UN Guiding Principles on Business and Human Rights [UNGP]. Access to remedy may help victims of human rights violations in seeking justice, or allow law enforcement agencies to identify a possible violator. However, mechanisms in protocols that try to enable 'attribution' to individuals will impede the exercise of the right to privacy. The former UN Special Rapporteur for Freedom of Expression has also argued that anonymity is an inherent part of freedom of expression [Kaye]. Considering the potential adverse impact of attribution on the right to privacy and freedom of expression, enabling attribution on an individual level is most likely not consistent with human rights.¶
Example: Adding personally identifiable information to data streams might help in identifying a violator of human rights and provide access to remedy, but this would disproportionally affect all users right to privacy, anonymous expression, and association.¶
Impacts:¶
Question(s): Have you considered potential negative consequences (individual or societal) that your protocol or document might have?¶
Explanation: Publication of a particular RFC under a certain status has consequences. Publication as an Internet Standard as part of the Standards Track may signal to implementers that the specification has a certain level of maturity, operational experience, and consensus. Similarly, publication of a specification an experimental document as part of the non-standards track would signal to the community that the document "may be intended for eventual standardization but [may] not yet [be] ready" for wide deployment. The extent of the deployment, and consequently its overall impact on end-users, may depend on the document status presented in the RFC. See [BCP9] and updates to it for a fuller explanation.¶
This RG document lays out best practices and guidelines for human rights reviews of network protocols, architectures and other Internet-Drafts and RFCs.¶
Thanks to:¶
Article three of the Universal Declaration of Human Rights reads: "Everyone has the right to life, liberty and security of person.". This article underlines the importance of security and its interrelation with human life and liberty, but since human rights are indivisible, interrelated and interdependent, security is also closely linked to other human rights and freedoms. This document seeks to strengthen human rights, freedoms, and security by relating and translating these concepts to concepts and practices as they are used in Internet protocol and architecture development. The aim of this is to secure human rights and thereby improve the sustainability, usability, and effectiveness of the network. The document seeks to achieve this by providing guidelines as done in section three of this document.¶
This document has no actions for IANA.¶
The discussion list for the IRTF Human Rights Protocol Considerations Research Group is located at the e-mail address hrpc@ietf.org. Information on the group and information on how to subscribe to the list is at https://www.irtf.org/mailman/listinfo/hrpc¶
Archives of the list can be found at: https://www.irtf.org/mail-archive/web/hrpc/current/index.html¶