
CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

this print for content only—size & color not accurate 7" x 9-1/4" / CASEBOUND / MALLOY
(0.8125 INCH BULK -- 416 pages -- 50# Thor)

THE EXPERT’S VOICE® IN OPEN SOURCE

Danny Brian

The Definitive Guide to

Berkeley DB XML

Simplify your storage, processing, and retrieval
of data with embedded XML databases.

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

The Definitive Guide to Berkeley DB XML
Dear Reader,

Too often, form follows function—far too often when form is data and function
is code. Code was created for data, not data for code. Useful data is valuable and
interesting, meaningful outside of code or applications that operate upon it. We
spend a lot of time and resources on getting data into the form appropriate for
the function: tables for individual pieces of data, tables to map between tables,
tables to express hierarchy, meta-table about tables…

XML is attractive for its simplicity, flexibility, and ubiquity. This is already
realized in the exchange of data: HTML, RSS feeds, RPC/SOAP, and thousands
of proprietary dialects belong to the XML family. XML is easily read, under-
stood, maintained, and manipulated with hundreds of compatible tools. Still,
most served data is stored in relational databases, converted to and from XML
at request or dump time. So why aren’t we storing data in XML to begin with?
Two reasons. First, we need to index and execute complex queries on the data.
And second, we want to log changes and maintain transactional data integrity.
We can’t do that with just XML. Can we?

Enter BDB XML, built atop Berkeley DB, the most deployed database on
Earth. Within minutes of reading this book, you will create XML collections
within local database files, with no database server or configuration needed.
You’ll learn to use the W3C XQuery language to perform sophisticated queries
across multiple data sources, compute hierarchical set operations, and reshape
the results to output entirely new XML (or non-XML). Flexible indexing, per-
document metadata, transactions, recovery, and support for all major operat-
ing systems and programming languages add up to a data solution you’ll be
glad you found—and a book that shows you how.

Danny Brian

Shelve in
Databases

User level:
Beginner–Intermediate

Berkeley DB XM
L

Brian

ISBN 1-59059-666-8

9 781590 596661

90000

6 89253 59666 1

Companion eBook
Available

RELATED TITLES

The Definitive
Guide to

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details
on $10 eBook version

forums.apress.com
FOR PROFESSIONALS
BY PROFESSIONALS™

Join online discussions:

Danny Brian

The Definitive Guide to
Berkeley DB XML

6668fm.qxd 7/20/06 3:38 PM Page i

The Definitive Guide to Berkeley DB XML

Copyright © 2006 by Danny Brian

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-666-1

ISBN-10: 1-59059-666-8

Library of Congress Cataloging-in-Publication data is available upon request.

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Matt Wade
Technical Reviewer: George Feinberg
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Kylie Johnston
Copy Edit Manager: Nicole LeClerc
Copy Editor: Nancy Sixsmith
Assistant Production Director: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor: Molly Sharp
Proofreader: Linda Seifert
Indexer: John Collin
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

6668fm.qxd 7/20/06 3:38 PM Page ii

For the late Darrel Danner
who taught me authenticity

6668fm.qxd 7/20/06 3:38 PM Page iii

6668fm.qxd 7/20/06 3:38 PM Page iv

Contents at a Glance

About the Author . xv

About the Technical Reviewer . xvi

Acknowledgments . xvii

Introduction . xix

■CHAPTER 1 A Quick Look at Berkeley DB XML . 1

■CHAPTER 2 The Power of an Embedded XML Database . 7

■CHAPTER 3 Installation and Configuration . 25

■CHAPTER 4 Getting Started . 35

■CHAPTER 5 Environments, Containers, and Documents . 47

■CHAPTER 6 Indexes . 61

■CHAPTER 7 XQuery with BDB XML . 73

■CHAPTER 8 BDB XML with C++ . 103

■CHAPTER 9 BDB XML with Python . 125

■CHAPTER 10 BDB XML with Java . 141

■CHAPTER 11 BDB XML with Perl . 161

■CHAPTER 12 BDB XML with PHP . 177

■CHAPTER 13 Managing Databases . 191

■APPENDIX A XML Essentials . 199

■APPENDIX B BDB XML API Reference . 231

■APPENDIX C XQuery Reference . 343

■INDEX . 355

v

6668fm.qxd 7/20/06 3:38 PM Page v

6668fm.qxd 7/20/06 3:38 PM Page vi

Contents

vii

About the Author . xv

About the Technical Reviewer . xvi

Acknowledgments . xvii

Introduction . xix

■CHAPTER 1 A Quick Look at Berkeley DB XML . 1

A Complete Example . 1

Creating and Using a Database . 2

Querying a Database . 3

Creating and Querying a Second Database . 3

Metadata . 4

XQuery . 4

Conclusion . 5

■CHAPTER 2 The Power of an Embedded XML Database 7

Database Servers vs. Embedded Databases . 7

Architecture Example . 9

Embedded Databases You Might Know . 10

SQLite . 11

Wordnet . 11

Embedded Databases on the Desktop . 14

XML for Data Exchange . 14

XML for Data Storage . 16

Indexing XML . 18

High-Performance XML Databases . 20

BDB XML for Quality Architecture . 21

Conclusion . 23

■CHAPTER 3 Installation and Configuration . 25

BDB XML Packages and Layout . 25

Berkeley DB . 25

Xerces C++ . 25

Pathan . 26

6668fm.qxd 7/20/06 3:38 PM Page vii

XQuery . 26

Berkeley DB XML . 26

Installation . 26

Windows . 26

Unix . 28

Building and Using Individual Packages . 29

Unix Variants . 30

Building Bindings . 31

Conclusion . 33

■CHAPTER 4 Getting Started . 35

Core Concepts . 35

The Shell . 35

Shell Options . 36

Creating Containers . 36

Adding and Deleting Documents . 37

Querying Containers . 38

Indexing Containers . 40

Using XQuery . 41

Metadata . 43

Transactions . 44

Conclusion . 45

■CHAPTER 5 Environments, Containers, and Documents 47

Environments . 47

Creating and Opening Environments . 48

Additional Environment Configuration . 49

Containers . 50

Creating and Opening Containers . 50

Container Types . 51

Some Container Operations . 52

Documents . 53

Adding Documents . 54

Retrieving a Document . 54

Replacing Documents . 55

Modifying Documents Programmatically . 55

Deleting Documents . 56

Transactions . 56

Validation . 56

Metadata . 57

Conclusion . 57

■CONTENTSviii

6668fm.qxd 7/20/06 3:38 PM Page viii

■CHAPTER 6 Indexes . 61

Creating and Manipulating Indexes . 61

Index Nodes . 62

Index Types . 62

Uniqueness . 63

Path Types . 63

Node Types . 64

Key Types . 64

Syntax Types . 65

Managing Indexes . 65

Adding Indexes . 65

Listing Indexes . 67

Deleting and Replacing Indexes . 67

Default Indexes . 68

Index Strategies . 68

Query Plans . 70

Conclusion . 72

■CHAPTER 7 XQuery with BDB XML . 73

Trying XQuery . 73

Sample Data . 74

XPath . 75

Expressions . 76

Sequences . 77

A Complete Example . 78

FLWOR Expressions . 80

for . 80

let . 81

where . 81

order by . 81

return . 82

Data Types . 82

Nodes . 84

Atomic Values . 84

Navigation . 84

Comparisons . 85

User Functions . 86

Modules . 87

Some XQuery Tricks . 87

Iteration vs. Filtering . 87

Regular Expressions . 88

Querying for Metadata . 89

■CONTENTS ix

6668fm.qxd 7/20/06 3:38 PM Page ix

Querying Multiple Data Sources . 90

Recursion . 90

Reshaping Results . 92

Utilizing Hierarchy . 94

Ranges . 96

Unions, Intersections, and Differences . 98

Indexes and Queries . 99

Query Plans . 99

Node Names and Wildcards . 101

Queries Against Results . 102

Conclusion . 102

■CHAPTER 8 BDB XML with C++ . 103

Compiling Applications . 103

Class Organization . 104

Errors and Exception Handling . 105

Opening Environments . 107

XmlManager Class . 108

Instantiating XmlManager Objects . 108

Managing Containers . 108

Loading Documents . 110

Preparing and Executing Queries . 112

Using Query Results . 114

Creating Other Objects . 115

Using XmlContainer . 116

Using XmlDocument . 119

Using XmlModify . 120

Using XmlTransaction . 121

BDB XML Event API . 123

Conclusion . 124

■CHAPTER 9 BDB XML with Python . 125

Running Applications . 125

Class Organization . 125

Errors and Exception Handling . 126

Environments . 126

XmlManager . 127

Instantiating XmlManager Objects . 127

Managing Containers . 127

Loading Documents . 128

■CONTENTSx

6668fm.qxd 7/20/06 3:38 PM Page x

Preparing and Executing Queries . 129

Using Query Results . 131

Creating Other Objects . 133

Using XmlContainer . 133

Using XmlDocument and XmlModify . 136

Transactions . 138

Conclusion . 139

■CHAPTER 10 BDB XML with Java . 141

Running Applications . 141

Class Organization . 142

Errors and Exception Handling . 142

Environments . 144

XmlManager . 145

Instantiating XmlManager Objects . 145

Managing Containers . 145

Loading Documents . 147

Preparing and Executing Queries . 148

Using Query Results . 151

Creating Other Objects . 153

Using XmlContainer . 153

Using XmlDocument and XmlModify . 156

Conclusion . 159

■CHAPTER 11 BDB XML with Perl . 161

Running Applications . 161

Class Organization . 161

Errors and Exception Handling . 162

Environments . 163

XmlManager . 163

Instantiating XmlManager Objects . 163

Managing Containers . 163

Loading Documents . 165

Preparing and Executing Queries . 166

Using Query Results . 168

Creating Other Objects . 169

Using XmlContainer . 169

Using XmlDocument . 172

Using XmlModify . 173

Conclusion . 175

■CONTENTS xi

6668fm.qxd 7/20/06 3:38 PM Page xi

■CHAPTER 12 BDB XML with PHP . 177

Running Applications . 177

Class Organization . 177

Environments . 178

XmlManager . 179

Instantiating XmlManager Objects . 179

Managing Containers . 179

Loading Documents . 180

Preparing and Executing Queries . 181

Using Query Results . 183

Creating Other Objects . 184

Using XmlContainer . 185

Using XmlDocument . 187

Using XmlModify . 188

Conclusion . 189

■CHAPTER 13 Managing Databases . 191

Populating Containers . 191

Dumping Containers . 192

Loading Containers . 193

Managing Logs . 193

Detecting Deadlocks . 194

Checkpointing Transactions . 195

Recovery . 195

Debugging Databases . 196

Backup and Restore . 196

Conclusion . 197

■APPENDIX A XML Essentials . 199

It’s About the Data . 199

XML Building Blocks . 203

Elements . 203

Attributes . 203

Well-Formedness . 204

CDATA . 205

Relationships . 206

Namespaces . 206

Validation . 207

XML Schemas . 209

XPath: the Gist . 210

Paths . 211

Nodes . 211

■CONTENTSxii

6668fm.qxd 7/20/06 3:38 PM Page xii

Document Object Model (DOM) . 212

XPath: the Details . 214

Contexts . 214

Path Operators . 214

Predicates . 215

Operators . 217

Axes . 217

Functions . 219

XML DOM, Continued . 221

Implementation Considerations . 222

Reading and Writing XML . 223

Other XML Technologies . 226

XSLT . 226

SAX . 229

RPC-XML and SOAP . 229

Conclusion . 230

■APPENDIX B BDB XML API Reference . 231

Language Notes . 231

DbEnv . 232

DbXml . 235

XmlContainer . 238

XmlContainerConfig . 260

XmlDocument . 261

XmlDocumentConfig . 269

XmlException . 270

XmlIndexLookup . 270

XmlIndexSpecification . 275

XmlInputStream . 282

XmlManager . 284

XmlManagerConfig . 310

XmlMetaDataIterator . 311

XmlModify . 312

XmlQueryContext . 317

XmlQueryExpression . 324

XmlResults . 327

XmlStatistics . 332

XmlTransaction . 334

XmlUpdateContext . 336

XmlValue . 337

■CONTENTS xiii

6668fm.qxd 7/20/06 3:38 PM Page xiii

■APPENDIX C XQuery Reference . 343

Expressions . 343

Functions . 347

Data Types . 351

■INDEX . 355

■CONTENTSxiv

6668fm.qxd 7/20/06 3:38 PM Page xiv

About the Author

■DANNY BRIAN first began programming on the Apple IIe as a way to keep his fin-
gers warm during the cold Minnesota winters. Games stole his attention early
on, and several of his first game creations helped him (barely) pass his junior
high classes. After a formal education in music, Danny became enamored with
open source and he started a web software company. In the past decade, Danny
has worked as a senior engineer for Norwest Bank, Ciceron Interactive, and
NTT/Verio. At Verio, he spearheaded the adoption of XML technologies and
architected the application framework for most of Verio’s current web hosting

products. Danny speaks frequently at the O’Reilly Open Source convention on a wide range of top-
ics. In 2001, he was awarded the Damian Conway Award for Technical Excellence (Best of Show at
OSCon) for two papers on Natural Language Processing. He was a columnist for The Perl Journal,
with articles republished in the books Games, Diversion, and Perl Culture and Web, Graphics, and
Perl Tk (O’Reilly, 2003). Danny holds the distinction of being the only human ever to grace the TPJ
cover. (It was the last issue of that publication, too.)

Danny is an avid composer, having written several commissioned choral works, and frequently
records and produces recordings of his piano improvisations. He also performs a stand-up mental-
ism act (mind-reading) for parties and adult gatherings. Danny’s show does not include yachts or
swords, and he does not belong to a magician’s guild. Any more.

Danny is the founder of Conceptuary, Inc., a games startup company. He is presently neck-deep
in work on the Glass Bead Network (at http://glassbead.net), which he insists will Change Every-
thing. He lives in Woodland Hills, Utah, with his wife of 11 years, Marie, and their three children.

xv

6668fm.qxd 7/20/06 3:38 PM Page xv

About the Technical Reviewer

■GEORGE FEINBERG is responsible for the technical direction, design, and imple-
mentation of Berkeley DB XML at Oracle Corporation (which acquired Sleepycat
Software early in 2006). In the late 1990s, he was responsible for the design of
the eXcelon XML database at Object Design. In addition to working with XML
databases, George’s background includes operating system kernel work at
Hewlett-Packard and the Open Software Foundation, and a history of distributed
file system projects.

xvi

6668fm.qxd 7/20/06 3:38 PM Page xvi

Acknowledgments

I’ve been fortunate to work with first-class folks through all phases of this book, and I want to
thank a few people for their contributions.

George Feinberg at Sleepycat/Oracle has the responsibility for the BDB XML architecture. He’s
also the primary contributor of community support for the product via the BDB XML mailing list
and is a great source of general technical know-how (as readers who join the list will quickly learn).
George’s detailed review and suggestions (and answers to silly questions) have been invaluable to
the production of this book, and I hope Sleepycat appreciates him and his product as much as they
should. (Subtle, huh?) Thank you also to John Merrells for originating the product and for his early
input on the book’s contents. This book’s subject is not academic for me because BDB XML plays a
central part in my current life’s work. I’m thankful to all those who have aided in its creation.

A hearty thank you to the staff of Apress. Thanks to Matt Wade for being so easy to work with
and for making this project happen in the first place. Nancy Sixsmith and Kelly Winquist helped a
great deal to make things read as well as they do. And thank you to Kylie Johnston for patient persist-
ence; you’re definitely the most organized and effective project manager I’ve worked with. Thanks
also to the production staff: Molly Sharp, Linda Seifert, John Collin, and April Milne.

Thanks to Scott and Ryan for your support and encouragement (especially when the book
interfered with The Project). Thank you to my family for your constant support and (albeit feigned)
interest in my work: Mom, Dad, Larry, Cheryl; and my kids, Garron, Tess, and Annie.

My adorable wife deserves the most gratitude. For your unending patience, for your unques-
tioning approval of my thousand and one projects, for getting up every morning with the goombahs,
and for being sincere in all you do—thank you Marie!

xvii

6668fm.qxd 7/20/06 3:38 PM Page xvii

6668fm.qxd 7/20/06 3:38 PM Page xviii

ca5dc47a1a589f3bbaac53bc8a905118

Introduction

Berkeley DB XML is exciting to me for multiple reasons. Text data is appealing (as you’ll realize
as you read The Definitive Guide to Berkeley DB XML), and I crave technologies that make it easy
to work with. XML is attractive for its flexibility, XPath for its intuitive elegance, XSLT for its declar-
ative nature, and so on. I know full well that XML didn’t break new technical ground or invent
something we didn’t already have. I don’t care about that. What XML did was to convince an indus-
try to use it—and to use it everywhere. Call it hype; call it The Man. The bottom line is that I now
have an astonishing array of tools and technologies, all compatible, to work with data as I like.

Until recently, a database was the big missing link; I had to convert data to and from SQL to
index it. Eventually, XML databases began to pop up. But even as they did, I was unhappy with
their design: most were language-specific, some were just XML-to-RDB interfaces, many had pro-
prietary or otherwise limited query languages, and so on.

Berkeley DB XML caught my eye for three reasons. First, it’s Sleepycat, and I’ve been a big
fan of Berkeley DB for a long time—its ease of use, its simplicity, and its near-ubiquity. Second,
it’s embedded, which is one of my pet requirements on any project that doesn’t absolutely need a
database server (just ask my associates). And third, it has language API support for all the major
programming languages. When version 2 came along with full support for the industry-standard
XQuery language (which is so cool), it was ready for production use in my own sizable projects.

I doubt that many technical books get written if the author isn’t excited by the subject matter.
I want to assure you that this is the case for The Definitive Guide to Berkeley DB XML. I wanted this
book to exist because BDB XML has made so much of my current work feasible and fun. I think it’s
an important piece of software that can dramatically improve how you work with data: how you
store it, how you search it, and how you retrieve it. I think XQuery is a great domain-specific lan-
guage that makes querying data…er, enjoyable, if I dare say so.

That’s what I think. And so I wrote the book I wanted to read on the matter.

Who This Book Is For
The Definitive Guide to Berkeley DB XML is for any developer who works with XML, whatever the
application. I included an XML overview (Appendix A “XML Essentials”) for developers who aren’t
necessarily familiar with XML. The early chapters address programmers who might be unconvinced
of the benefits of either an embedded database or the benefits of XML itself, but there’s also plenty
of information there for any converts.

As long as I brought it up, rest assured that I’m not a total zealot. I think that most applica-
tion technologies—programming languages, markup languages, databases, data transports, query
languages—have their time and place. No one tool is good for everything—some are great at some
things, and all are horrible at least one thing. BDB XML is no different. I would never suggest that
it should completely replace other data solutions, for example. That said, it has replaced many
(but not all) of my own such systems, particularly in the area of document storage, and I am quite
happy with the results.

The Definitive Guide to Berkeley DB XML is not an exhaustive treatment of XQuery, XML, or
related technologies. This book instead pulls them together as used by Berkeley DB XML and gives
you everything you need to know about them to work with it.

xix

6668fm.qxd 7/20/06 3:38 PM Page xix

How This Book Is Structured
The Definitive Guide to Berkeley DB XML has four sections:

Preparation (Chapters 1–4): These chapters get you rolling by covering installation and a “get-
ting started” tutorial chapter.

Details (Chapters 5–7): These chapters discuss the particulars of BDB XML, including its physi-
cal organization, its indexes, and its query interface.

APIs (Chapters 8–12): These chapters contain tutorials for individual languages, so consult the
chapter for the language you intend to use. (The API reference in Appendix B, “BDB XML API
Reference,” can fill in any blanks for you.)

Utilities, beginner materials, and references (Chapter 13, “Managing Databases,” and the
appendixes): The rest of the chapters are extras, including a complete API reference for all lan-
guages, an XQuery reference, and an XML beginner’s guide.

Chapter 1, “A Quick Look at Berkeley DB XML,” provides a quick-fire, several-page look at the
software and its functionality. This chapter should give you an idea of what BDB XML is all about.

Chapter 2, “The Power of an Embedded XML Database,” is a lightweight (and opinionated)
look at embedded databases and XML from an application architecture perspective. If you’re not
interested in design issues, skip it.

Chapter 3, “Installation and Configuration,” details the steps to get BDB XML up and running.
It’s a painless process, but be sure to refer to the BDB XML documentation for completely up-to-
date information.

Chapter 4, “Getting Started,” is a tutorial to using BDB XML, focusing on the shell utility provided
with the distribution. As such, it’s a good practical starting point, regardless of which programming
language you intend to use later.

Chapter 5, “Environments, Containers, and Documents,” presents the building blocks of BDB
XML. These core concepts are necessary for using the system, just as you need to understand tables
to be able to use a relational database.

Chapter 6, “Indexes,” describes various options for indexing your documents.
Chapter 7, “XQuery with BDB XML,” teaches the XQuery language. It is a huge subject, but

this chapter tries hard to touch on most of the points you’ll want to know to write effective query
expressions.

Chapter 8, “BDB XML with C++,” offers a tutorial for using BDB XML from C++. All the other
language APIs inherit the C++ interface, so it’s a useful read for all developers.

Chapters 9 through 12 contain API tutorials for Java, Python, Perl, and PHP. I recommend that
you jump to the chapter for your language of choice because the API chapters are largely redun-
dant. These chapters do discuss language particulars, and each includes language-specific code
examples. Note that not all languages that have BDB XML APIs are covered; APIs exist for Tcl and
Ruby, but the concepts discussed are useful there, too.

Chapter 13, “Managing Databases,” touches on some topics that are not in the scope of this
book, including database backups and recovering.

Appendix A, “XML Essentials,” is an XML overview for XML novices. It’s also a decent summary
of XML details for use by experienced XML programmers, with sections on XPath and the Docu-
ment Object Model (DOM).

Appendix B, “BDB XML API Reference,” is a complete reference for the BDB XML API for the
languages covered in this book: C++, Java, Python, Perl, and PHP.

Appendix C, “XQuery Reference,” provides a short list of all XQuery keywords and operators,
supported functions, and data types.

■INTRODUCTIONxx

6668fm.qxd 7/20/06 3:38 PM Page xx

Prerequisites
BDB XML is supported on both Unix and Windows, with support for many programming languages.
It’s recommended that you run the latest stable versions of compilers and languages with which you
intend to use BDB XML.

At the time of writing, the current version of BDB XML is 2.2.13, but many details about the
next release (2.3) have also been included. Versions prior to 2.2.13 might not have their quirks cov-
ered here, and code examples might not be compatible.

Downloading the Code
The source code for this book is available to readers at http://www.apress.com in the Downloads sec-
tion of this book’s home page. Please feel free to visit the Apress website and download all the code
there. You can also check for errata and find related titles from Apress. I have also created a quick ref-
erence card for BDB XML, available as a download from both the Apress and Sleepycat sites.

Contacting the Author
Danny Brian can be contacted at danny@brians.org, and you can visit his own sizable BDB XML
deployment as part of the Glass Bead Network at http://glassbead.net.

■INTRODUCTION xxi

6668fm.qxd 7/20/06 3:38 PM Page xxi

6668fm.qxd 7/20/06 3:38 PM Page xxii

A Quick Look at Berkeley DB XML

Most developers, especially Unix programmers, are familiar with Berkeley DB (BDB). The
embedded database has been an integral part of BSD-based distributions since 1992, which now
include Linux and Apple OS X. Core open source projects such as sendmail, Subversion, MySQL,
and OpenLDAP add valuable services atop BDB’s key/value storage. Sleepycat—the company that
owns, develops, and supports BDB—claims an installation base of more than two million. Google,
Amazon.com, AOL, Cisco, Motorola, Sun, and HP are all companies that depend on the database
as part of critical applications. In short, BDB is about as ubiquitous as software gets.

■Note In February 2006 Oracle acquired Sleepycat Software, pulling the most widely used open source data-
base into its product offering. Oracle plans to continue development of Sleepycat’s product line and support of its
large customer base.

Because it wanted to move into the XML application space, Sleepycat (with the primary par-
ticipation of John Merrells) developed BDB XML as a layer atop BDB. Today, BDB XML boasts a
sophisticated query engine using XQuery with query plan optimization and flexible indexing. It
also inherits the transaction features of BDB.

This chapter gives a brief overview of BDB XML for those familiar with the core concepts:
embedded databases, XML, and XQuery. Later chapters examine these topics in more depth. The
examples in this chapter make use of the BDB XML shell utility, but can be written in any of the pro-
gramming language supported by BDB XML—including C++, Perl, Python, Java, and PHP, all covered
later in this book. (Tcl is also supported in the BDB XML distribution, but is not covered here.)

A Complete Example
For an illustrative example of exactly what BDB XML does, imagine that we have a collection of XML
files for books that we intend to sell. A sample is shown in Listing 1-1.

Listing 1-1. A Sample Book XML File, 0553211757.xml

<book isbn="0553211757">
<title>Crime and Punishment</title>
<author id="923117"/>
<publisher>Bantam Classics</publisher>
<weight>9.3</weight>
<pages>576</pages>

</book>

1

C H A P T E R 1

6668ch01.qxd 7/11/06 4:57 PM Page 1

Figure 1-1. Berkeley DB XML’s features built upon Berkeley DB

A collection of XML files exists for authors as well, as shown in Listing 1-2.

Listing 1-2. A Sample Author XML File, author-923117.xml

<author id="923117">
<name>Fyodor Dostoevsky</name>
<birthdate>November 11 1821</birthdate>
<deathdate>February 9 1881</deathdate>

</author>

Clearly we aren’t maintaining comprehensive information here, but we’ll use these files to pop-
ulate a BDB XML database.

Creating and Using a Database
Like BDB, a BDB XML database is a file on disk and is typically referred to as a container. Your appli-
cation opens, reads, and writes to this file directly.

Assuming that we have these XML files in the current directory, the following example uses the
dbxml command-line utility—available as part of the BDB XML distribution—to create a container,
add to it an index, and populate it with the preceding book document.

dbxml> createContainer books.dbxml
Creating node storage container with nodes indexed

dbxml> addIndex "" title node-element-equality-string
Adding index type: node-element-equality-string to node: {}:title

dbxml> putDocument 0553211757.xml 0553211757.xml f
Document added, name = 0553211757.xml

Basically, we now have a database file, books.dbxml, containing a single document (with a name
matching the filename, which is why we supplied it twice). The database has equality indexes for ele-
ments with the names isbn, title, and id.

CHAPTER 1 ■ A QUICK LOOK AT BERKELEY DB XML2

6668ch01.qxd 7/11/06 4:57 PM Page 2

Querying a Database
We can now query the database using XQuery, which in this case is close to looking like an XPath
statement:

dbxml> query '
collection("books.dbxml")/book[title="Crime and Punishment"]
'
1 objects returned for eager expression

Typing print to the shell will display the resulting document in its entirety, which matches the
document we added. Before going further, we’ll add two more indexes to this container for attrib-
utes isbn and id:

dbxml> addIndex "" isbn unique-node-attribute-equality-string
Adding index type: unique-node-attribute-equality-string to node: {}:isbn

dbxml> addIndex "" id node-attribute-equality-string
Adding index type: node-attribute-equality-string to node: {}:id

Creating these indexes before the database becomes large avoids the overhead of indexing a
more populated database.

Creating and Querying a Second Database
We want to use a second container to store the author information, so we’ll do that next:

dbxml> createContainer authors.dbxml
Creating node storage container with nodes indexed

dbxml> addIndex "" id node-attribute-equality-string
Adding index type: node-attribute-equality-string to node: {}:id

dbxml> addIndex "" name node-element-equality-string
Adding index type: node-element-equality-string to node: {}:name

dbxml> putDocument author-923117.xml author-923117.xml f
Document added, name = author-923117.xml

We’d most likely populate this database with our author files programmatically by using one
of the BDB XML APIs, but the shell is ideal for testing before implementation. We added the author
document and created an index for the author id and name. We can perform more complex queries
by using both containers; for example, a query to find all books written by an author by the name
“Fyodor Dostoevsky” looks like this:

dbxml> preload books.dbxml

dbxml> query '
collection("books.dbxml")/book[author/@id =

collection("authors.dbxml")/author[name="Fyodor Dostoevsky"]/@id]
'
1 objects returned for eager expression ...

In practice, we expect such queries to often be dynamic, with an author name submitted by a
user, for example. And in a real application, a user having clicked “Dostoevsky” would give us the
author’s id, so we would use that for a query for all books by the author.

There is no real limit to the XML that can be stored or queried in a database. BDB XML enables
the creation of indexes for documents’ attributes and elements using a node’s name. Indexes can be
given data types to optimize certain queries, such as numeric and date types for range comparisons,

CHAPTER 1 ■ A QUICK LOOK AT BERKELEY DB XML 3

6668ch01.qxd 7/11/06 4:57 PM Page 3

and can enforce database uniqueness for the nodes they index. Because BDB XML uses XQuery as
its query engine, you can build sophisticated queries that perform set computations, perform
numeric and string processing, and even rewrite XML to another dialect.

Metadata
For the example here, there is a lot of data we want to associate with a book record, including the
price and perhaps a sales ranking. This is data we expect to change frequently, and we’d rather not
have to change our book XML to accommodate it (if, for example, the XML is data shared with
resellers). BDB XML enables metadata to be added to documents in a container and indexed. This
data gets queried by using the same XQuery expressions, meaning it will be available for the same
query processing as if it were XML in the documents.

Here, we add a price metadata attribute to the book file we added previously and then add an
index for it to the container:

dbxml> openContainer books.dbxml

dbxml> setMetaData 0553211757.xml '' price decimal 10.95
MetaData item 'price' added to document 0553211757.xml

dbxml> addIndex '' price node-metadata-equality-decimal
Adding index type: node-metadata-equality-decimal to node: {}:price

We added price metadata to our document with a value type price, which will help when we
want to perform range queries—for example, to find products within a certain price range:

dbxml> query '
collection("books.dbxml")/book[dbxml:metadata("price") < 11.00]
'
1 objects returned for eager expression ...

Metadata can similarly be used to store dates, booleans, base-64 data, and even durations. In
fact, BDB XML can contain metadata-only records as well (records with no XML content). You can
even build a flat relational database with BDB XML by using just metadata and no XML! (Hopefully,
this is not part of your planned application design because it discards most of the usefulness of the
system.)

XQuery
As demonstrated, BDB XML uses XQuery for its query engine. XQuery in its entirety is not in the
scope of this book, being an elegant yet comprehensive query and scripting language in its own
right. (A chapter is dedicated to it, however.) Consider just the following query example; it queries
for books by a given title (which has been stored in the variable $title), subqueries for the author
name, and outputs the results with XML.

dbxml> query '
for $book in collection("books.dbxml")/book[title=$title]

for $author in collection("authors.dbxml")/author[@id=$book/author/@id]
order by $author/name
return

<author>{$author/name/string()}</author>
'

XQuery supports user functions, importing of XQuery files, and even network document
queries. You can imagine some of the possibilities, and they’re all available with BDB XML.

CHAPTER 1 ■ A QUICK LOOK AT BERKELEY DB XML4

6668ch01.qxd 7/11/06 4:57 PM Page 4

Conclusion
Where BDB XML’s power is derived from its flexible indexing and XQuery engine, its reliability lies in
its design as an embedded API for use in your applications—there is no database server. Complete
support for atomic transactions, recovery, and replication help to round out the stability feature set.
Of course, they are available on all major operating systems, and APIs are supported for all major
programming languages.

This chapter has only touched on the features and functionality available in BDB XML, but
hopefully you have a glimpse of the power it offers to index and query XML collections.

CHAPTER 1 ■ A QUICK LOOK AT BERKELEY DB XML 5

6668ch01.qxd 7/11/06 4:57 PM Page 5

6668ch01.qxd 7/11/06 4:57 PM Page 6

The Power of an Embedded
XML Database

Sleepycat’s Berkeley DB XML (BDB XML) is an embedded database used to store and index XML
documents. Immediately, two core philosophies require some exploration: embedded storage and
XML itself. The exploration is riddled— surprisingly to some, old news to others—with biases on all
sides. This chapter clarifies the issues and explains the cases where and the reasons why you might
want to use BDB XML. My central points are the following:

1. Embedded databases are preferable to dedicated database daemons in most common
applications.

2. XML and its related technologies (XPath, XQuery, and so on) make for easy and useful data
storage and access in most common applications.

3. BDB XML simplifies architecture and accelerates development (for most common
applications).

This chapter is not essential to using BDB XML. However, my experience is that many developers
do not reap the benefits of either embedded databases or XML because they lack an understanding
of how either can simplify and improve their development, integration, and subsequent support of
a software system. Some background on architectural issues is useful for answering this question:
“Why would I want to use BDB XML in the first place?”

Database Servers vs. Embedded Databases
The term embedded is a loaded one, with various implications in both software and hardware devel-
opment. Fortunately, it has a relatively simple meaning as applied to a database. Here, “embedded”
describes the libraries used to access and manipulate the database files themselves, having been
embedded in the application itself.

Consider the popular relational databases (RDBs): Oracle, Sybase, MySQL, and so on. Typical
deployments of these products are referred to as database servers because each runs a daemon
process (or multiple processes) to accept requests and deliver the results of queries. The code that
opens, reads, and writes to the actual database files is contained within this server processes. To get
data, you connect to the database server, issue an SQL query, and get back results. This provides iso-
lation for the data itself, and ease of controlling access based on permissions. It also allows for simple
network access: clients can access the database from the local machine or from across the network
or Internet, and permissions controls can accommodate such variables.

In this way, a database server is not unlike a web server, with SQL in place of URLs, raw data
streams in place of HTML, and indexes in place of a filesystem. Both take requests over the network

7

C H A P T E R 2

6668ch02.qxd 7/17/06 6:38 PM Page 7

and respond with the data requested. In other words, both are servers in the client-server model
(see Figure 2-1).

Figure 2-1. Client-server database design

Where a web server takes requests from a web browser (the client), the database takes requests
from a database client. The client might be a desktop application or, as is often the case, itself a web
server.

By contrast, “embedding a database” means that the product does not run a daemon of its
own. If you imagine the libraries used by mysqld, for example and import them directly into your
own program, you have an embedded database. Rather than connecting over the network to a
port and issuing an SQL query, you call a function to open the physical data file, pass your SQL to
another function to issue the query, and get back your results. The only difference in this scenario
is that there is one process running—your program—rather than two (or more). Most of the more
popular RDB products now have embedded variants: MySQL has embedded MySQL, Oracle’s 10g
product provides licensing to allow embedding, as does Sybase ASE. Figure 2-2 has moved the
database libraries into the application.

Figure 2-2. Embedded database design

The effect of embedding the database libraries in the application is that the server is removed
from the design completely or that the application itself becomes the server.

Embedding has many advantages over daemons, including application portability and the
relative ease of deployment. By embedding the database libraries in a program (and meeting any
licensing requirements), developers can produce and sell an application that manages its own
data as a powerful database, or even an application that itself acts as a specialized database dae-
mon, without the overhead and complexity of installing, configuring, and running a database
server alongside their application. Embedding also has architectural implications for traditional
web applications, which I will examine momentarily. By their nature, embedded databases tend
to be more developer-focused than their server counterparts. Whereas in some environments a
relational database server can be configured to allow nondevelopers to issue simple queries and
perform other operations, embedded databases often limit access to the application, over which a
nonprogrammer has no control. Unless a developer has provided users a way to issue queries, only
the application that embeds the database libraries typically performs queries against it.

CHAPTER 2 ■ THE POWER OF AN EMBEDDED XML DATABASE8

6668ch02.qxd 7/17/06 6:38 PM Page 8

Architecture Example
Calling a database server over the network entails a protocol that is usually proprietary to the
database, which is why a database “driver” is necessary to communicate with the server. Even
SQL statements sent to the DB server are typically delivered in a nontext format, and only the
library or driver can understand the response from the server.

Having a server daemon can be beneficial when many users on a network are calling the data-
base directly. Consider a multiplayer game, in which each game client connects directly to the
database server. The advantages of a server in this case include the storage of permissions so that
only certain users can access certain parts of the database. An example is shown in Figure 2-3.

Figure 2-3. A basic server-client architecture for a networked game

Of course, this architecture would not be sufficient for most games. To chat with other players,
another server would be required to route and deliver messages in real time. Some program would
need to know how to manage battles between players and enforce rules of game play. Figure 2-4
shows the addition of just such a multiuser server.

Figure 2-4. Adding a real-time server to the architecture

This design incurs some complexity because the game client now needs to maintain network
connections with two different servers. The program needs to include libraries for each protocol
because they are unlikely to be different. To enforce the game rules, the multiuser server probably
needs to query the database to know, for example, whether a given object is in a given area. And we
probably want users to have to authenticate to the multiuser server to begin with, meaning it will
already be querying the database—assuming that’s where we keep authentication data. So the next
step in our architectural train-of-thought is to have the client go through the multiuser server for
everything (shown in Figure 2-5), acting as a single gateway for all the game clients. (Note that this

CHAPTER 2 ■ THE POWER OF AN EMBEDDED XML DATABASE 9

6668ch02.qxd 7/17/06 6:38 PM Page 9

setup can be duplicated in order to scale, and multiple gateways can exist. By single gateway, I
mean that game clients have one point of contact to the system.)

Figure 2-5. Routing all data through the real-time server, the client is simplified.

This is the state first described in this chapter and it is where most application server designs
find themselves. An RDB server does not meet the functionality required by the server, so a tier is
introduced into the server side of the architecture. In this model, the DB server acts simply as a data
store. There isn’t a good reason to not complete the train-of-thought and move the data access into
the multiuser server, embedding the database, as shown in Figure 2-6.

Figure 2-6. Embedding the database in the real-time server

This architecture makes the most sense because all we need is data storage. The multiuser
server is enforcing the permissions, so we don’t need a database server to do so. It is negotiating
authentications, accepting incoming network connections, and responding to a wide variety of
data requests—a dedicated DB server is not necessary to accomplish these things. Furthermore,
our client is greatly simplified, requiring only one data connection to be open and one data pro-
tocol to be known. The database files themselves still contain our data and can be subjected to
transactions, backups, restores, replication, and the other benefits the design had with a dedicated
database server.

Of course, there will be cases in which a dedicated DB server might make sense. But in this
architecture, and in many like it, a DB daemon simply incurs more complexity and overhead than
is necessary for the design.

Embedded Databases You Might Know
A major example of the embedded philosophy at work is BDB itself, upon which BDB XML is built.
Long a staple of Unix distributions, BDB claims more than 200 million installations. Core Internet
services and applications use BDB to store data because of the ease of quickly reading and writing
organized data from an application. Many major technology companies—including Microsoft,
Yahoo!, Google, Sony, Sun, Apple, AOL, Cisco, eBay, HP, and Motorola—use BDB in one form or
another.

CHAPTER 2 ■ THE POWER OF AN EMBEDDED XML DATABASE10

6668ch02.qxd 7/17/06 6:38 PM Page 10

SQLite
The Open Source database SQLite (http://www.sqlite.org) illustrates the embedded database
model well, retaining most features you would expect from an RDB server. It was introduced by
D. Richard Hipp in 2000, but gained a large user base in 2005 with the introduction of new features
and an award from Google and O’Reilly. SQLite is a library, written in C, which implements most
traditional RDB features including transactions and recovery, with APIs available for nearly all
popular programming languages. Consider this shell session after installing SQLite:

> sqlite everything.db
SQLite version 3.1.3
Enter ".help" for instructions
sqlite> create table people (name varchar(50), birthyear integer);
sqlite> insert into people values ('Charlie Chaplin', 1889);
sqlite> insert into people values ('Martin Luther King', 1929);
sqlite> select * from people
Charlie Chaplin|1889
Martin Luther King|1929
sqlite>

This session creates a database called everything.db with a table people. You’ve seen similar
tasks performed with database server shell tools. In this case, the sqlite command-line program is
writing directly to the database file instead of connecting over the network (regardless of whether
the database is local) to the server, and issuing a request. Similarly, accessing this database from
within a program (whether in C, Python, Perl, or other) directly reads and manipulates the file.
Note, too, that SQLite is a zero-configuration engine, meaning that what you see above is all you
need to work with this particular embedded database, after installing. To many, this sounds a bit
too lightweight to do much good: “A zero-setup, zero-configuration database with no daemon?
Well I never!” Nonetheless, SQLite has atomic transactions, supports databases up to two ter-
abytes, has bindings for most languages, and already implements the bulk of SQL92. This from
a well-commented, well-tested open source installation with less than a 150 KB optimized code
footprint. And SQLite doesn’t have any external code dependencies, making it ideal for embed-
ded devices.

The ease of embedding a database should be obvious to anyone who has dealt with the com-
plexities of installing, configuring, running, and monitoring a dedicated database server (not to
mention the millions who have seen the “Driver Error: Could not connect to database server” text
in response to a submitted web form).

Wordnet
Almost any homegrown indexing solution can qualify as an embedded database. The Cognitive
Science department at Princeton University maintains a freely downloadable lexicon of the English
language called Wordnet (http://wordnet.princeton.edu). Wordnet is unique in that it maps rela-
tionships between concepts: it can tell you, for example, that a “car” is a kind of “motor vehicle”,
which is a kind of “vehicle”, which is a kind of “transport”, which is a kind of “artifact”, which is a
kind of “object”, and so on, up to the most abstract (“primitive”) concepts. Wordnet can also tell you
what things are a “part of” other things and other “psycholinguistic” attributes. All this information
is recorded using pointers from concept to concept. If you’re familiar with the product called Visual
Thesaurus, you’ve seen Wordnet at work because it uses Wordnet as its data source. To provide some
context to the benefits of more flexible embedded database solutions, as well as give some back-
ground on examples in Appendix A, “XML Essentials” and Chapter 7, “XQuery with BDB XML” on
queries, I will examine Wordnet in moderate detail.

The database files for Wordnet are simple text files generated by the lexicographer tools used by
the department. For each word group (noun, verb, adjective, adverb), there is a space-delimited data

CHAPTER 2 ■ THE POWER OF AN EMBEDDED XML DATABASE 11

6668ch02.qxd 7/17/06 6:38 PM Page 11

file that lists the words along with “pointers” to other words, and an index that lists the words with
the “offsets” identifying the byte positions in which those words occur in the data files. Storing byte
offsets rather than line numbers makes for faster lookups because the location can be addresses
without reading the whole file up to that line number, something it would have to do in order to
count newlines. Thus, an index entry will look like Figure 2-7.

Figure 2-7. Wordnet index format

The entries are in alphabetical order. I won’t delve into the details, other than to observe that
the index entry duplicates information that is also found in the records themselves. The data in the
index is space-delimited (requiring spaces in the word itself to be replaced with underscores). The
offset numbers at the end identify the location of the records in the data file. There are two records
for “baseball”: one is the sport; the other, the ball. The “part-of-speech” is “n” for “noun”. Notice that
the “2”, indicating the number of records, is duplicated in the index—in this case, for legacy com-
patibility. The “3” identifies how many “pointer” symbols follow it, so the index parser can count
forward that many characters. In other words, counting from the first element does not tell you the
meaning of a given element; the elements themselves determine how many of something will fol-
low. Yes, this is a self-deterministic data format.

In Figure 2-7, the last two numbers are these offsets. Each one identifies an entry in the accom-
panying data files; Wordnet refers to these entries as synsets, meaning a set of synonyms. The index for
the noun “baseball” identifies two senses: “baseball” the ball (which was illustrated in Figure 2-7)
and “baseball” the sport. Opening the data file and seeking to the second offset (using the standard
Unix C function) places us at this next line, shown in Figure 2-8, which is the data entry for the sport
sense of the word (slightly abbreviated):

Figure 2-8. Wordnet data format.

CHAPTER 2 ■ THE POWER OF AN EMBEDDED XML DATABASE12

6668ch02.qxd 7/17/06 6:38 PM Page 12

Remember, this is the entry for baseball “the ball,” not the sport. The format is not dissimilar
from the index, and I haven’t labeled everything. Notice that this record includes much of the
same information as the index, albeit with more detail. This time, the pointers themselves are
listed. The at sign (@) is Wordnet’s symbol for a hypernym pointer, denoting a parent IS-A rela-
tionship. It shouldn’t surprise us that the offset after the @ (02752393) is the offset for the noun
“ball” because a baseball is a kind of ball. The other pointer for baseball (note that there are two,
indicated by the “number of pointers” digits), here omitted, is also a hypernym, pointing to the
“baseball equipment” synset. If we here looked at the data record for “ball”, we would see that it
has a hypernym pointer to “game equipment”. This chain of IS-A pointers continues all the way
up to abstract concepts such as “artifact” and “physical entity”, just as the baseball “the game”
synset (refer to Figure 2-7) had hypernym pointers up to “activity” and “entity”.

Similarly, the “ball” synset record has what is called a “hyponym” pointer aimed back to the
“baseball” record; this pointer is indicated with a tilde (~). A hyponym is the opposite of a hyper-
nym, indicating a child IS-A relationship.

Here is the complete “ball” data record, with the hyponym pointers highlighted.

02752393 06 n 01 ball 1 031 @ 03377643 n 0000 ~ 02772480 n 0000 ~ 02775835 n 0000
~ 02812045 n 0000 ~ 02833311 n 0000 ~ 02853649 n 0000 ~ 02854404 n 0000 ...
~ 03102695 n 0000 ~ 03297969 n 0000 ~ 03343022 n 0000 ~ 03409124 n 0000 ...
~ 03550091 n 0000 ~ 03591893 n 0000 ~ 03679835 n 0000 ~ 03700610 n 0000 ...
~ 03898560 n 0000 ~ 03933730 n 0000 ~ 03937405 n 0000 ~ 03978641 n 0000 ...
~ 04067463 n 0000 ~ 04072629 n 0000 ~ 04204317 n 0000 ~ 04206528 n 0000 ...
~ 04357453 n 0000 ~ 04485605 n 0000 ~ 04529397 n 0000 | round object that is hit ..

Note that this is the entry for only the sense of ball as a “game object” (as opposed to an abstract
“globe/ball”, “Lucille Ball”, a pitch that misses the strike zone, and the cruder plural use of the word).
Each of the previously listed hyponyms are IS-A children of “ball”, including “basketball”, “bowling
ball”, “racquetball”, and so on.

■Note Wordnet’s hypernym and hyponym pointers are examples of duplicate bidirectional pointers: every hyper-
nym in the database has a corresponding hyponym. The effect is that a given record contains all information about
pointers both to and from it. Pointer-heavy databases such as Wordnet often use redundant pointers to provide the
most common lookups the fastest access (a list of “kinds of X” then requires only one read of the data file). More
complex queries such as “all kinds of kinds of X” imply inheritance and require recursion so that each record is
read in turn.

Wordnet is an example of a relatively fast embedded database that uses plain text as its storage
format. The inclusion of data in the index itself (such as the pointer symbols) enables an application
reading this index to know certain things about the records without actually accessing them. For
example, the index entry tells an application that the database contains two definitions for “base-
ball”, and that it has three pointers for it. A graphical user interface (GUI) displaying search results
can thus display this information without opening the data file at all.

The use of normal text for the indexes and data files makes the information useable by many
tools, including command-line utilities. Writing a parser for this data is fairly trivial because we can
split the string on white space and, knowing the data format, can identify each element. I do so in
Appendix A.

The same design decisions that make Wordnet compact and fast also make it essentially a read-
only database. Bidirectional pointers require that any pointer change be made in the records as well
as the index entries at both ends of the pointer. And because most any change to a record will offset
the byte addresses of data, a complete reindexing and rewriting of both data files and indexes is
made necessary by nearly every write. Finally, this data format is interpretable only by a processor

CHAPTER 2 ■ THE POWER OF AN EMBEDDED XML DATABASE 13

6668ch02.qxd 7/17/06 6:38 PM Page 13

that knows to use spaces as separators, in order to determine element order dynamically based on
the number of fields, and to properly read offsets and perform file seeks.

Note that Wordnet takes advantage of completely inflexible indexing and storage to provide
speedy lookups and a compact distribution. Wordnet can afford to do this because it is intended as
a read-only database. This is not a weakness for the publisher because the Princeton researchers
desire to retain control of all modifications. This stiff implementation does result in some fragility,
however. Being space-delimited, the meaning of text in any given field of both the index files and data
files is entirely dependent on the field order, resulting here in data duplication to retain legacy com-
patibility. In some cases, the interpretation of a piece of text depends on a value before it, as with the
“number of pointers” field. And clearly, being read-only is inconvenient for a user who does want to
extend or otherwise modify the database.

Embedded Databases on the Desktop
Many desktop applications use embedded databases. Most email clients, for example, index your
mail messages to make them easily searchable. Filesystem search utilities often store indexes to
speed up the process of finding files. Newer operating systems make indexes of file contents as
well, essentially turning the desktop into a database. Apple OS X’s Spotlight and Google Desktop
on Windows are examples. They illustrate well the purest use of a database for finding information.
Because they are required to pull data from disparate sources and varying formats, and are not an
authoritative source of information themselves, they cannot enforce specific schemas or informa-
tion organization on their data sources (email, web bookmarks, address books, and so on). As you’ll
soon see, XML fits well into this model of a database as a tool for indexing and searching, without
the generally expected need to cajole the data into a limiting table schema.

XML for Data Exchange
XML has gained mainstream usage primarily as a format for sharing data. HTML is the most obvious
example. Long before XHTML came along, many of us (not least of all, search engine companies)
were writing spiders to fetch, parse, and make sense of the web. Early versions of HTML did not
require balanced tags, and even today many sites do not enforce well-formed XHTML. This places
a burden on web browsers as well as crawlers, which must make assumptions about the errors in
markup. Of course, many content providers do not intend for their HTML to be parsed and indexed.
In many cases, the author of a website wants to exclude this possibility to protect content.

■Note Appendix A is a tutorial for those not familiar with XML.

For persons or companies that do want to share their content, HTML makes little sense.
Because its purpose is the formatting of text for attractive display, its tags consist of stylistic and
organizational elements. Any site “consuming” the content of another will want to put that content
within the context and style of its own site, making already-present style information data that must
be removed. Imagine that I run a news aggregator and that a news outlet supplied me with the fol-
lowing HTML for display on my own site:

<html>
<body bgcolor="#cccccc">

<p>Area Man Keeps Promise to Locals</p>
<p>2:20pm, October 12, 2006</p>
<p>Rob Stanson, County Correspondent</p>

CHAPTER 2 ■ THE POWER OF AN EMBEDDED XML DATABASE14

6668ch02.qxd 7/17/06 6:38 PM Page 14

<p>John Yates is not generally considered a man of his
word. Just ask his wife ...</p>

<p>We caught up with John and family last week at the
fair ...</p>

</body>
</html>

Clearly I’ll want this article to show up on my site looking more like the rest of my site. But I
might want to do other things with it, too. It would be nice to be clear about which text is the head-
line, so that I can show just that title in a listing of articles. I’d probably like to expire the article after
a duration of my choosing, requiring me to know the date it was published. I might want to split the
article content across several pages to match my site’s layout or to maximize advertiser’s exposure.
Grouping articles by their author could be useful to my readers, too.

Given the preceding HTML, the only way I could accomplish any of these goals would be to
either pull out each piece manually or write a program that matches each tag and extracts the infor-
mation. This would happen with the hope that the format didn’t change in the future. Moreover, I’d
have to write a parser to convert the date to a format intelligible to my program to allow sorting and
expiration of articles.

Because the person giving me the article wants it shown on my aggregator, it is likely to be
much easier. Instead of giving me this HTML, imagine that a format existed whereby the provider
could provide me with the following:

<entry>
<title>Area Man Keeps Promise to Locals</title>
<published>2006-10-12T14:20:30Z</published>
<author><name>Rob Stanson, County Correspondent</name></author>
<content>John Yates is not generally considered a man of his word. Just ask

his wife ... We caught up with John and family last week at
the fair ...</content>

</entry>

With the provider’s assurance that this format won’t change without prior notification, I can
write code to parse it pretty easily. I even have the date in a standard format I can use (datetime).

Of course, after I realize that this text is XML, I won’t have to write code to parse it at all. I can
use any old XML parser from any programming language I want and simply pull out each piece of
data with a path (XPath). I can use XSLT documents to display the source XML on my website, too.

Later, I will be told that this format is an XML standard called Atom (okay, technically it’s just an
excerpt). Not only do I not need to write code to parse it but I also don’t need to use an XML parser
or template language at all. The content management software I use to run my aggregator already
supports Atom (and yes, Really Simple Syndication [RSS]). I can just stick the URL to this news feed
into my CMS settings, and my work here is finished. Yes, you’d think I would have known that, see-
ing as how I run a news aggregator.

One sign of the success of standardized XML formats is that people (users, not necessarily devel-
opers) stop thinking about them. RSS used to be a buzzword; now it’s an assumed feature of every
website, delivering syndication and even business-critical data between people and companies.
Nonetheless, it took something as simple (and well-hyped) as XML to make it work.

RSS and Atom are relatively lightweight examples of an XML standard for sharing information.
Standards such as XML-RPC and Simple Object Access Protocol (SOAP), also dialects of XML, are
used every day to exchange data and request services. They also enjoy a high degree of development
ease and fast integration with systems that support them.

This is how XML has helped to make the sharing of information—you’ll forgive the term—a
no-brainer.

CHAPTER 2 ■ THE POWER OF AN EMBEDDED XML DATABASE 15

6668ch02.qxd 7/17/06 6:38 PM Page 15

XML for Data Storage
Even though XML is used universally for the transfer of organized data, it is only starting to gain
strength as a preferred format for data storage. Websites that deliver HTML pages and RSS feeds still
pull that data out of a relational database before formatting it in the respective XML dialect and
delivering it to the requestor. Given the near-ubiquity of XML as a format for the exchange of data,
the obvious question is this: “Why aren’t we just storing XML to begin with?”

When you stick data into a relational database, that database saves a record, delimiting the
pieces of data internally, using a binary data format. This format is optimized for the recovery of
data, but is readable only by the database itself (or libraries that understand the format). SQL is
used to retrieve and modify the data, requiring an SQL processor to translate instructions into
library-level operations. However, the data files themselves are completely database-dependent.
This is the case for an embedded database as well.

Why Are We Using a Database Again?
The advantage of storing data in a binary database file primarily concerns index and search speed.
This is an important concept: the primary purpose of a database is to efficiently index and find
information. If finding information quickly is not a priority, there’s really no reason to be using a
database. In fact, storing data in a database is usually a bad idea if it needn’t be indexed. The rea-
son that RDBs provide utilities for “dumping” a database to a text file is twofold. First, the text
dump is the only portable format for moving data between databases; second, the text is intelligi-
ble to people. If a binary file is corrupted, restoring lost data is difficult and database-specific.

Of course, there are other reasons to use databases. Those that support transactions provide
atomicity (grouping operations to either complete fully or not affect data at all) and logging to
enable rollbacks and recovery of data in spite of changes. Where data is too large to fit in memory,
databases make possible the ease of querying portions. Features such as replication of data in and
of themselves make databases attractive. Nonetheless, indexing remains the typical primary pur-
pose of databases, and other means—albeit disparate ones—exist to achieve these benefits (think
change control a la CVS, data access via mmap, and rsync for replication) when data is not binary.

Thus, binary storage could be described as a “necessary evil” to effectively index data. To main-
tain indexes, the data itself must also be stored in a way to effectively let the database know when to
update an index, which is the main reason why databases contain the data in addition to the index.
Otherwise, you would have to update the indexes manually each time a piece of data changes. This
often leads to the database being the only source of the data it contains, although this is not neces-
sarily ideal. The fact that a database query returns the data itself is technically a side effect of the
fact that it’s stored there: a convenience.

Imagine that you had a database containing contact information, with one record/row per per-
son, but the database didn’t store the strings themselves (only the indexes). The result of a query
would be the matching row or record, and you would have to then look up the data itself, perhaps in
an address file for that person. This may sound overly difficult if you’re looking for a phone number.
The point is that this is not the purpose of a database: if you need a phone number, you know the
person whose number you need so there is no reason to search. You can simply look at the record for
that person and read the phone number. By contrast, imagine that you needed to know all the people
in your address book who lived in Iowa. The database would return a list of all people who matched
the query, which is what you wanted in the first place. The lack of each address book element within
the database isn’t a problem. The best example of the purpose of a database is a web search engine:
the Internet is the data source; Google is an index of the data source. It’s true that search engines

CHAPTER 2 ■ THE POWER OF AN EMBEDDED XML DATABASE16

6668ch02.qxd 7/17/06 6:38 PM Page 16

cache content for convenience and reindexing, but you only view the cached copy of a web page in
the event that it is missing or no longer contains the data you need. For practical purposes, a search
engine index tells you what matches your query and refers you to the source. It’s your job to go there.

This might all sound academic, but it touches on why a database has come to occupy the
“center” of an application design: it’s not just the index to find data; it is the data. Because we use
databases to not just find but also to store and organize our data, entire applications start with
database schema design: how many columns, what data types, how much data to allow, what
columns to index, and so on. Data structure in an RDB is forced by necessity: how could the data-
base index data that had no structure to begin with? Where data already has some structure—as
is the case with a title element in an HTML document or meta-information from a Word doc—a
developer will often pull them out and use them as indexed fields. But in most cases, the data, if
there is any, exists in an inconsistent and disorganized format. The RDB is intended to enforce a
format, and work is needed to adapt existing data to that format. Database schema design is a sci-
ence with its own graduate degrees because of the difficulties of designing database schemas that
are both efficient and flexible, for both existing and expected data.

Prestructured Data
My point in going to such lengths with this explanation is that XML is already structured. In fact, an
entire database could be dumped as a single XML file with <row/> elements for each row and named
values for each key or field. Being already structured, XML does not need a database to organize it.
XML schema exists if you want to enforce a common format across a collection of XML files. XML
even has its own query language, XPath, which is capable of evaluating against documents and spe-
cific node lists. An XML database exists instead for the same main reason that an RDB exists: to
effectively index and find information—in this case, across a collection of documents.

As with an RDB, XML databases tend to store the data itself to allow autonomous index
updates. XML files don’t need to exist before they get put into the database; they can be created on
the fly as with a RDB row. But more often than with RDBs, an XML database is queried to find docu-
ment matches and then the file itself is used to pull out the desired data. This is easy given the fact
that the same query language can be used on individual files and collections of files. Moreover,
technologies such as XSLT are most often used with complete XML files to drive transformations,
meaning that having the whole file is useful.

Having your data in XML to begin with means that you are not reliant on a database for its
organization or the tools associated with that database to edit it. In fact, many relational databases
provide tools to load and dump XML directly from the database for this very reason: XML is stan-
dard, well supported, and completely portable. Why rely on an interface that connects to a database
to edit the data or (worse yet) have to write your own editors, when you can use nearly any editor of
your choice? Consider, too, how often applications translate data from an RDB to XML to deliver it
to an accessor in a format it can understand. Wouldn’t it have been easier to just hand over the file
itself, incurring no more overhead than an HTTP GET request?

The primary benefit of XML over many binary and text data formats is its human-readability
and self-contained context. Whether you encounter an XML file from a website, in a log, in an
email, or in a database, you won’t need to know where it came from to have some clue about where
it belongs or what it contains. You won’t need to buy or install special software to read it, invent a
special protocol to exchange it, or learn a particular programming language to process it. Text data
is simple, easy, and—given markup—semantically rich.

You will soon wonder how to go about indexing it, however. If you’re already wondering, read
on. If not, start wondering now, and the book will follow right along.

CHAPTER 2 ■ THE POWER OF AN EMBEDDED XML DATABASE 17

6668ch02.qxd 7/17/06 6:38 PM Page 17

BUT WAIT, MY DATA ISN’T HIERARCHICAL!

Much ado is made over hierarchical data and the fact that XML is a hierarchical data format. This observation is not
necessarily useful to deciding whether to use XML or understanding XML as a data format.

All data is hierarchical. Even the flattest file records data that in some context belongs to a hierarchy. A user-
name and password belong to a user; a user belongs to a system; and so on. When the adjective hierarchical is
used to describe data, it usually describes the desired format, and whether or not some application or person wants
the data “flat” or as a tree. But the things being described by the data are always hierarchical, I guess depending on
your particular ontological worldview. (In truth, not even a “flat” file is really flat. After all, a file has a filename and
exists somewhere in a directory structure. This in and of itself gives the file’s contents some context, even if the file
contains a single sentence.)

The real objection to putting data into a hierarchical data format is usually the difficulty of use. This is a pretty
hollow gripe because the tools to write and process XML are everywhere. More often than not, people that try to
express data without a hierarchy end up inventing a hierarchy anyway to record metadata (dates, authors, subjects
of a document) and do so in a proprietary format. Any such element is a child element of the document and a sib-
ling of the rest of the stuff in the file. A hierarchy is born, just like that! The data would have been better served to
be hierarchical to begin with, able to take advantage of XML standards and tools.

Indexing XML
Long before BDB XML was around, many of us had a need to index XML documents. For example,
I wanted to maintain my own copy of the aforementioned Wordnet database in a way that would
permit writes without reindexing the collection each time. I’ve been fascinated with the lexicon for
some time and have used it for lots of natural language processing work. In addition to the serious
stuff, I wanted to play games such as “20 Questions,” in which a program would choose a random
concept and I’d have to ask questions to narrow it down. And vice versa (the program would ask the
questions). This would require me to add data to the lexicon and pointer types, too. For example,
given the concept of “oven,” I wanted the lexicon to understand that it was an appliance, it was
electrical, and that it was used to cook. An oven was already a kind of an appliance, and the appli-
ance entry implied electrical. So by adding a noun attribute pointer from “appliance” to “electrical,”
a noun function pointer from “oven” to “prepare/cook” and also to “bake,” the user could get correct
answers to the following questions: “Are you a thing?” “Are you electrical?” “Are you used to cook?”

A Homegrown Database
I first went about this by using BDB files with the offset numbers for the synset keys and the con-
tents of the synset as values, delimited with double-pipes (||). A second database file contains
indexes with all words in the lexicon as keys and the synsets as values. This at least allowed the
contents to be changed, synsets to be added, and indexes to be queried and maintained, although
queries remained very inflexible. The major drawback to this solution (aside from the madness of
custom delimiters) was the inability to edit the data with the tool of my choice. Because the synset
contents (pointers, gloss, and so on) had to be packed into the database value after each update,
the only decent method was to write the record programmatically, calling my custom API each
time. I had created a solution to the “read-only” constraint of Wordnet, but had shackled both my
users and myself to a custom data format, proprietary code, and API in a specific programming
language. And nobody likes to be shackled.

CHAPTER 2 ■ THE POWER OF AN EMBEDDED XML DATABASE18

6668ch02.qxd 7/17/06 6:38 PM Page 18

As soon as XML started gaining mainstream momentum, I decided it was the proper format
for editable Wordnet files. In Appendix A I demonstrate the creation of a large XML collection like
this one (this very one, as it happens). Here is an example of a resulting XML file; some of this
should already be familiar:

<Synset fileVersion="1.0" pos="n">
<Id>14861</Id>
<WnOffset version="2.1" pos="n">02772480</WnOffset>
<LexFileNum>06</LexFileNum>
<SsType>n</SsType>
<Word lexId="0">baseball</Word>
<Pointers>

<Hypernym>14746</Hypernym>
<Hypernym>14866</Hypernym>

</Pointers>
<Gloss>a ball used in playing baseball</Gloss>

</Synset>

Notice here that offset numbers aren’t used for the pointers. They have been replaced with IDs
sequentially assigned to each file, with this file named 14861.xml. 120,000 similar files comprise a
fully editable collection, but not one that is very easy to navigate. For example, to find entries for
the word “baseball”, I’d have to grep 120,000 files. To provide a means of quickly looking up files,
I wrote a quick Perl script using libxml2 and Berkeley DB Perl modules (see Listing 2-1).

Listing 2-1. Poor-Man’s XML Indexing

#!/usr/bin/perl -w
use strict;
use XML::LibXML;
use DB_File;
$DB_BTREE->{'flags'} = R_DUP ;

my $datadir = "./xml-src/";
my $indexdir = "./index/";
my $parser = new XML::LibXML;
my %btree;
tie %btree, 'DB_File', "$indexdir/words.index", O_RDWR|O_CREAT, 0666, $DB_BTREE,

or die "Cannot open $indexdir/words.index: $!\n";
opendir my $dir, $datadir;
while (my $file = readdir($dir)) {

next if ($file =~ /^\./);
my $dom = $parser->parse_file("$datadir/$file");
foreach my $node ($dom->findnodes("/Synset/Word")) {

my ($textnode) = $node->findnodes("text()");
my $lcname = lc($textnode->getData);
if ($textnode) { $btree{$lcname} = $file; }

}
}

This script used a simple XPath query, which it then executed against all 120,000 files (see
bold section), writing to a simple database file the result of each query as a key and the filename
for that result as the value. So, with an XPath /Synset/Word, each word would be extracted from the
synset file and written as a key to the database with the filename as the value. This index file could
then be used to look up “baseball” as a key, which would return the values of the two matching
synset files.

CHAPTER 2 ■ THE POWER OF AN EMBEDDED XML DATABASE 19

6668ch02.qxd 7/17/06 6:38 PM Page 19

I hope the constraints of this solution are obvious. Every time a synset is added, deleted, or
changed, somebody needs to be sure that entry is modified in the indexes it affects. Certainly there
is little query power available unless I feel like writing code to perform set intersections and unions
using my various indexes, which, to begin with, are based on XPath that the query engine knows
nothing about.

My home-grown indexing had features I don’t demonstrate here. I could in fact perform joins
on queries and had the ability to monitor file updates to synchronize indexes. I waited and watched
the emerging XML databases and then tried each new arrival—hoping for one that matched the fea-
tures I needed for several large and looming projects. Berkeley DB XML 1 came close. BDB XML 2
nailed it.

High-Performance XML Databases
My own personal criteria for a production-ready XML database included the following.

Open Source, Active Community
“Community” in the software world provides security: security in support, software security, and so
on. Developers that share the common interest of developing stable software provide support and
help to one another. It’s interesting to me that most of the support that developers and users receive
for commercial closed source software still comes from user communities via mailing lists and mes-
sage boards. Having the source code available to the user base makes community support all the
more effective, and enhancements are available to anyone willing to put in the time. I wanted an
open source XML database for which I could create language bindings if they didn’t already exist
and integrate with existing open source projects as well as licensed software that form a large part
of my development environment. I also looked for an active user mailing list with heavy participa-
tion from the software’s authors. A willingness by core developers to answer even beginners’ questions
is a sign of a quality project. A database is a complex piece of software, and I hoped to find a project
that built off of existing and stable projects, rather than building something as daunting as an XML
database from scratch.

OS and Language Compatibility
As I’ve said, a major point of XML is complete technology agnosticism. It doesn’t make much sense to
be using XML but to have to use a specific operating system or programming language to process it.

XQuery Interface and Multiple Data Sources
XPath 1.0 is great, but XQuery and XPath 2.0 make searching XML a joy. I wanted an XML database
that enabled me to use the XQuery standard to request and reshape XML with custom functions
and multiple data source. I could then do intersections between databases, among other things.

Embedded
I wanted an XML database that would not introduce a lot of operational and environmental
complexity.

Transactions, Recovery, Replication
My applications require production-ready deployment. Race conditions, irrecoverable corruption,
and the inability to copy data were not acceptable constraints.

CHAPTER 2 ■ THE POWER OF AN EMBEDDED XML DATABASE20

6668ch02.qxd 7/17/06 6:38 PM Page 20

Flexible Indexing
The power of any database lies in its indexing options. My applications had to be able to search on
a long list of criteria, much unknown at development time. I needed indexing for nodes, elements,
attributes, and metadata to support the project. I also needed to not be constrained by a hard-to-
mutate schema or table because my data was subject to frequent format changes.

Easy Learning Curve
I was not an expert with XQuery or XML databases when I began the search for a database, and I
needed a system that was not overly daunting. I needed code examples, a well-designed API, and an
environment I could make sense of to succeed with the project.

I found that these needs were met with BDB XML. Having already long used XML for data stor-
age, I needed a database solid and flexible enough to be used in many environments, with many
programming languages, and with constantly changing data. Version 2 of BDB XML is fast, scalable,
and—best of all—easy to use with a modicum of XML knowledge.

BDB XML for Quality Architecture
This chapter has had two themes: embedding databases and using XML for data storage. The two
are not entirely dissimilar. The basic goal of XML is to make data more intelligent and intelligible,
and embedded databases have the goal to put the data closer to where it gets used. Together, they
provide for greatly simplified and more intelligent architectures. The following application exam-
ples illustrate cases of moving from a database server architecture to an embedded database
architecture. Each is unique in how it uses a database, but in all cases the application gains archi-
tectural and operational simplicity.

Websites
Easily the most populous of applications, websites large and small implement a design not unlike
the one at the start of the chapter (see Figure 2-9).

Figure 2-9. A typical website architecture with database

The web server takes HTTP requests and then processes a template or script to handle the
request, which in turn uses a database driver to query a database server, formatting the results per
the template, and outputting HTML back to the web browser. The server architecture has two
process tiers. Typically the database contains web content documents and their associated meta-
data: document titles, dates, subjects, and so on.

CHAPTER 2 ■ THE POWER OF AN EMBEDDED XML DATABASE 21

6668ch02.qxd 7/17/06 6:38 PM Page 21

Consider the architectural change shown in Figure 2-10.

Figure 2-10. A single-tier website architecture with BDB XML

Obviously, this is a simpler model, but the benefits go beyond the number of lines in a diagram.
The database still contains web content documents and their associated metadata. However, assume
that these documents include HTML as well as XML. An HTML document already has embedded
metadata, so why duplicate it with extra columns in your database table when you can query it
directly with BDB XML?

Moreover, by using XSLT in the document processor, you can quite compactly convert XML
from the database into HTML of your liking. You could actually use the BDB XML library as the doc-
ument processor if you wanted to use XQuery as your templating language! (No, XQuery was not
designed for this, but it does let you easily “reshape” XML, making it a simple matter to write tem-
plates in XQuery.)

Newcomers to XML are quick to observe that XPath looks a lot like a file path or URL. That’s not
surprising, given that URLs are intended to address hierarchical data, and both file structures and
XML are basically a series of embedded directories. Wikis have become a popular model for web-
sites because of their editability and simple design. A typical wiki URL uses a single parameter to
name the file being requested, such as the following:

http://www.brians.org/wiki?About+the+Company

Imagine this being requested to our BDB XML web server and the HTML of the requested page
(in the database) being the following:

<html>
<head>

<title>About the Company</title>
</head>
...

</html>

Rather than naming all the files according to their wiki title, we could allow this simple URL
interface by using the parameter in this XPath statement:

[/html/head/title = $param]

Obviously, this can lend itself to more practical uses of XPath with URLs. There might be times
when you want to allow direct database queries via the URL (and other times when you don’t). If you
were willing to pass the queries along to BDB XML (within predicates, explained in Appendix A),
you could grab documents by a certain author:

http://www.brians.org/html/head/meta[@name='author' and @content='Danny Brian']

CHAPTER 2 ■ THE POWER OF AN EMBEDDED XML DATABASE22

6668ch02.qxd 7/17/06 6:38 PM Page 22

Or with certain keywords:

http://www.brians.org/html/head/meta[@name='keywords' and contains
(@content, 'music')]

No, I’m not suggesting that you implement an open URL database query server. I mean to illus-
trate that BDB XML is intended specifically to hold documents, and that the kinds of queries you
might want to use look right at home on a URL. The vast majority of documents already have meta-
data and organized content—an XML document especially so—and BDB XML provides a complete
solution to storing, indexing, reading, and manipulating your documents.

Desktop Apps
A native desktop application fits closely with most people’s idea of “embedded,” particularly if the
program is compiled and packaged with an installer. Looking around at the preferences and config-
uration files for your favorite applications, you’ll notice that many or most have moved to XML
to store settings. Others now use XML to store all text data documents, whether word processors,
spreadsheets, or even slide presentations. All applications need a way to store data to disk, and BDB
XML provides an ideal solution for those that deal with lots of XML (see Figure 2-11).

Figure 2-11. Using BDB XML for embedded data storage

Features and implementations may evolve, but BDB XML will not constrain you. “Legacy
data formats” really aren’t an issue; if your XML formats change, you can reshape documents into
a new format with only XQuery. Adding new “fields” (elements), moving data around, even stor-
ing non-XML data—BDB XML gives you the flexibility to treat user data however you want, and
transactions and recovery logs make it a safe system—even when Ctrl+Alt+Delete is used liberally
by certain users.

Of course, any of the documents in a BDB XML database can be written to disk, sent over the
network, or otherwise treated as simple XML data. Other applications can access the database
concurrently. In fact, there’s no reason a desktop app couldn’t be built expressly for managing a
content database that is simultaneously being read by a web server.

Conclusion
BDB XML addresses much of the complexity and rigidity that plague many data stores with an
embedded access library. The architectural impact of an embedded database is that you can put it
where you want, run it the way you want, access it how you want, and introduce very little system
complexity in the process.

Too often, applications get designed around a notion of how their data will look before pro-
ceeding to enforce that preconception on the data to keep it compatible and manageable.

CHAPTER 2 ■ THE POWER OF AN EMBEDDED XML DATABASE 23

6668ch02.qxd 7/17/06 6:38 PM Page 23

Unfortunately (or fortunately, for those of us seeking higher incomes), it is the nature of data to
change, and not just the field values but also the entirety of how data is organized. The best applica-
tions are those that can evolve to include new features and adapt to bugs and requests. Data is no
different! Because data hopefully changes more often than code, data needs a lot of flexibility.

Rigid data solutions are frustrating on many levels. No group or person should have to spend
hours or weeks testing the impact of adding a table column for “Country” to a user database
because the designer did not anticipate selling internationally. Agile is the latest buzzword to
describe the speed and ease of change in processes, and it holds true for software design. The best
design is not the one that will never require modification, but the one that will best accommodate
modification without unreasonable delay or hassle. This shouldn’t be confused with the danger of
“premature optimization:” it is easier to build for change than it is to preempt or prevent change.

In this context, BDB XML is a key piece of the agile software puzzle. You can index collections
almost any way you want. You can insert documents that don’t comply with a particular schema,
or you can enforce a strict schema for the entire collection. You can reshape query results to look
however you want. You can read the database directly from your desktop application, or you can
stick it on a web server and read it remotely through a web server or service. You can run it on
almost any operating system, access it with any major programming language, and use industry-
standard tools of your choosing. Using BDB XML as the data layer for any application will ease
changes to any part of the application.

CHAPTER 2 ■ THE POWER OF AN EMBEDDED XML DATABASE24

6668ch02.qxd 7/17/06 6:38 PM Page 24

Installation and Configuration

This chapter covers the installation process with an overview of the dependencies (all included
with the distribution) before providing more platform-specific instructions. Note that Berkeley DB
XML (BDB XML) requires no site configuration. Aside from the options used to compile BDB XML
(installation path, library debugging, compiler and interpreter versions), all database configuration
is performed at the database and database environment level. This is convenient for moving data-
bases between environments and even system installations.

BDB XML Packages and Layout
The BDB XML distribution, which is available for download from http://sleepycat.com, includes
the package dependencies and some build utilities. The source distribution has the following direc-
tory layout:

dbxml-2.x/
install/
db-4.x/
pathan/
xerces-c-src/
xquery-1.x/

The Unix BDB XML build places the resulting files (libraries, binaries, and so on) in the install
directory. The rest contain the individual packages.

Berkeley DB
This is the Berkeley database, atop which BDB XML is built. Even though you might already have a
version of BDB installed, this version is included for linking with BDB XML and will ensure compat-
ibility. You needn’t uninstall or overwrite your existing BDB installation.

BDB XML uses BDB version 4 to inherit its features, including scalability, caching, flexibility
of storage and access, and transactions. This also means that BDB XML databases can store non-
XML data in a separate table, as with a traditional BDB database, by using the same database
environment.

Xerces C++
Xerces is the Apache project’s open source XML parser in C++ and Java (with Perl and COM bindings).
It features namespace support, validation using XML Schemas, a complete DOM implementation
compliant through Level 2 (and some of Level 3), SAX 1.0 and 2.0, and decent encoding support and
performance.

25

C H A P T E R 3

6668ch03.qxd 7/17/06 6:42 PM Page 25

As the parser, Xerces provides BDB XML with its internal parsing and DOM functionality. Note
that the version included with BDB XML is the pure Xerces-C source distribution and is included for
build convenience.

Pathan
Pathan is an open source XPath processor developed jointly by DecisionSoft, Sleepycat, Data Direct,
and Parthenon Computing. Pathan essentially adds XPath functionality to the Xerces DOM. Although
Pathan 2.0 (adding XPath 2 conformance) is labeled “beta,” it has been stable for some time and
was developed primarily for inclusion in other software, including BDB XML. The version of
Pathan included in the BDB XML distribution is different from the older official version, which
cannot be used.

XQuery
The XQuery package is part of BDB XML, but modularized so it can be used externally. It adds
XQuery functionality to the Xerces DOM, using Pathan for its XPath processor. Being an external
library has many benefits, not the least of which are the tools that the package includes. XQuery is
a powerful language that I’ll explore in its own chapter, making use of this package and its tools.

Berkeley DB XML
The BDB XML library links the rest of the libraries and provides the architecture for containers,
documents, and indexes, as well as all underlying query optimization and processing features. Of
course, it also provides the APIs for the system. You won’t often need to use any of the APIs from the
other packages to work with BDB XML because it has all the classes and methods to accomplish
most common operations. The exception is work with the underlying Berkeley DB libraries because
they are required to create and manage database environments.

Installation
Installing BDB XML on various operating systems is straightforward, but I’ve included some tips
here. The BDB XML source includes all the files for building on any supported platform and the
bindings for any supported language; there are not separate distributions for different operating
systems or languages.

Windows
Binary and source distributions are available for Win32. Both are described in the following sections.

Binary Install
The best option to install BDB XML on Windows is to use the binary installer (.msi) available for
download from Sleepycat. It places the entire compiled distribution—including .dlls, executables,
documentation, and sample code—in a directory titled Program Files/Sleepycat Software/
Berkeley DB XML 2.x and a prefetch (.pf) file in your system directory (to let programs know where
to find the .dlls). The binary Windows install includes precompiled bindings for Python (BDB XML
2.2 and later) and Java, but not for Perl or PHP.

CHAPTER 3 ■ INSTALLATION AND CONFIGURATION26

6668ch03.qxd 7/17/06 6:42 PM Page 26

Source Install
Each package subdirectory of the source distribution contains a build_win32 directory, which is
used for compiling. This directory in turn has project, workspace, and solution files for MS Visual
Studio versions 6 and 7.1 (Visual Studio .NET 2003), the main files in dbxml/build_win32. Sleepycat
provides several different versions to meet varying needs, all functional for Windows XP, 2000, NT,
and 98 (see Table 3-1).

Table 3-1. Windows Build File Explanations

File MSV* Version File Type Description

BDBXML_all.sln 7.1 Solution All projects for third-party
packages and BDB XML
examples

BDBXML_all.dsw 6.0 Workspace Third-party packages and BDB
XML examples

Berkeley_DB_XML.sln 7.1 Solution Projects for Berkeley DB XML
libraries only, no examples

Berkeley_DB_XML.dsw 6.0 Workspace Projects for Berkeley DB XML
libraries only, no examples

dbxml_gettingStarted.sln 7.1 Solution Projects for Berkeley DB XML
examples only

dbxml_gettingStarted.sln 6.0 Workspace Projects for Berkeley DB XML
examples only

*.vcproj 7.1 Project

*.dsp 6.0 Project

BDB XML can be built from MSVS .NET using the BDBXML_all.sln file, choosing a project
configuration from the toolbar (options are Debug, Release, Debug Static, and Release Static), and
selecting Build Solution from the Build menu. This will build all third-party libraries, BDB XML, and
BDB XML examples. Library files are placed in dbxml-2.x/lib, and executables and DLLs are placed
in dbxml-2.x/bin. When using the debug project configuration, executables and DLLs are placed in
the subdirectory dbxml-2.x/bin/debug.

Trying the Examples
Before running the example executables, be sure that your PATH includes the location of the BDB
XML and third-party libraries. For example:

PATH=%PATH%;C:\Program Files\Sleepycat Software\Berkeley DB XML 2.x\bin\

Most of the example programs require an example container. These are loaded by changing
your directory to dbxml/examples/cxx/gettingStarted, creating a new directory for the database
environment, and then running the script dbxml_example_loadExamplesData.cmd with that new
directory name and the current directory:

dbxml_example_loadExamplesData.cmd exampleDbEnv .

The first argument tells the script where to find the environment; the second tells where to find
the XML data directory ../../xmlData relative to the current directory. Run from gettingStarted/,

CHAPTER 3 ■ INSTALLATION AND CONFIGURATION 27

6668ch03.qxd 7/17/06 6:42 PM Page 27

this is the current working directory. After loading the database, you can run the other examples to
demonstrate BDB XML functionality. Most take an -h command-line option to specify the environ-
ment path.

Unix
The BDB XML distribution includes in its top directory a script buildall.sh. This is the primary
configuration and build tool, and it greatly simplifies the build on various Unix variants.

■Note BDB XML is fairly modern technology so it works best with the latest stable versions of the programs you
intend it to work with (gcc, Perl, Python, and so on). I recommend that you install the latest stable versions of such
languages and utilities before compiling BDB XML.

The build script accepts arguments for setting prefixes and to build debug libraries, and
options to build the third-party language bindings. All options are displayed with this command:

$ sh buildall.sh --help

Running buildall.sh with no options attempts to configure and build all libraries with default
settings, placing them in the directory dbxml-2.x/install, and the C++ examples in dbxml-2.x/
dbxml/build_unix. Only the C++ libraries and binaries are built by default, without the other lan-
guage bindings. The options to buildall.sh include those shown in Table 3-2.

Table 3-2. Command-Line Options for buildall.sh

Option Explanation

--enable-debug Build the debug libraries

--prefix=path Specify an installation path (default is ./install)

--enable-java Build the Java API

--enable-perl Build the Perl interface

--build-one=library Build (or clean) a single library, berkeleydb, xerces, pathan, and so on

--clean Clean (make clean) the build tree

--distclean Clean (make distclean) the entire build and reset configuration

Individual language libraries can be built by themselves, as explained in a later section. In many
cases, the language bindings can be easier to build alone instead of using the buildall.sh utility.
Some language bindings as well as operating systems have build quirks that are addressed in the
following sections. Each version of BDB XML improves the build on each platform, so check the
installation notes and mailing list for the most up-to-date information.

If you want to install the BDB XML libraries or binaries in a location other than the dbxml-2.x/
install directory, you can specify that location to the buillall.sh utility. Be aware that in most
configurations the paths used by the dynamic linker must include the location of the libraries for
the binaries to execute. This is accomplished on most Unix variants by having the path in your
LD_LIBRARY_PATH environment variable or by adding the paths to the ldconfig hints file, usually at
/etc/ld.config.

CHAPTER 3 ■ INSTALLATION AND CONFIGURATION28

6668ch03.qxd 7/17/06 6:42 PM Page 28

Building the Java API with the buildall.sh script requires that you have a working javac in
your path and a Java version of 1.3 or later. After the build runs make, the Java library for BDB XML
(dbxml.jar) will be located in your build directory (install/lib). To use the Java API in your pro-
grams, set the environment variable CLASSPATH to include the paths to both this and the db.jar files,
and set the LD_LIBRARY_PATH environment variable to include the .libs/ directory in the installation
directory (install/…).

Note that many of the language bindings, including Perl and Python, have installation scripts
that attempt to copy the completed libraries to their production locations (/usr/local/...). If
you run the buildall.sh script with parameters to build language bindings without permissions to
install in those locations, the copy will fail. Because the language bindings are compiled after the
BDB XML libraries, you can usually just change the directory to the bindings source and do a make
install or equivalent as root or a user with proper permissions.

Finally, BDB XML requires the specific version of Berkeley DB included with the distribution.
Occasionally a source build finds an earlier installed version of BDB and attempts to use it instead.
Be certain to either remove the previous installation or modify your paths to use the proper BDB
version.

Building and Using Individual Packages
The buildall.sh script provides the best means of compiling the individual BDB XML packages.
If you need to build them individually, this section details the means. With some exceptions, you
should still use the versions included with the BDB XML distribution because several packages
have changes or patches not available in the official versions.

Berkeley DB
BDB XML requires Berkeley DB 4.3.28 or newer. This must be configured with the --enable-cxx
configuration option to build the C++ API and the --enable-java option to build the Java API.

$ cd dbxml-2.x/db-4.x/build_unix
$../dist/configure --enable-cxx
$ make
$ make install

This installs BDB in a default location at /usr/local/BerkeleyDB.4.x; a different installation
directory can be specified with the --prefix option. When building BDB XML using this installa-
tion, you can use the --with-berkeleydb option to tell buildall.sh where to find it.

Xerces
All of the BDB XML libraries other than Berkeley DB require the Xerces libraries and source from the
Xerces release version 2.7 or newer; releases before BDB XML 2.2 use Xerces 2.6. The XERCESCROOT
environment variable is used to find the source. An example build for Linux follows:

$ cd dbxml-2.x/xerces-c-src2_x
$ export XERCESCROOT=`pwd`
$ cd src/xercesc
$./runConfigure -plinux -d -cgcc -xg++ -minmem -nsocket -tnative -rnone
$ make
$ make install

This build places the Xerces installation under /usr/local; use the -P option to specify a differ-
ent path and use the buildall.sh option --with-xerces to tell BDB XML where to find it.

CHAPTER 3 ■ INSTALLATION AND CONFIGURATION 29

6668ch03.qxd 7/17/06 6:42 PM Page 29

Pathan
You must use the version of Pathan included with BDB XML. Pathan can be built alone, as shown in
the following example:

$ cd dbxml-2.x/pathan
$./configure --with-xerces=../xerces-c-src2_x
$ make
$ make install

By default, Pathan is installed in /usr/local. Use the --prefix option to change the installation
path and use the --with-pathan option to buildall.sh for BDB XML to locate it.

XQuery
The XQuery package included with BDB XML must be used:

$ cd dbxml-2.x/xquery-1.x/build_unix
$../dist/configure
$ make
$ make install

XQuery will be installed under /usr/local/BerkeleyDB.XQuery.1.x by default. You can change
the installation directory with the --prefix option to configure, as well as the location for the com-
piler to find Pathan and Xerces, by using --with-pathan and --with-xerces, respectively. If you
change the installation target, you need to supply the --with-xquery argument to buildall.sh when
you configure BDB XML.

Unix Variants
This section offers tips for specific operating systems.

Linux
BDB XML builds cleanly “out of the box” on Linux 2.4, 2.5, and 2.6 distributions with gcc 3.2 and
later, with no options necessary to buildall.sh. This is also true for the Perl, Python, and Java (1.3 or
later) bindings. See the section on building bindings for more information on specific languages.

Mac OS X
BDB XML builds cleanly on Mac OS X 10.4 and later with Apple’s Xcode tools version 2.1 and later
(available from Apple’s Developer Connection at connect.apple.com). This version includes gcc 4.0.
Xcode includes ported versions of gcc, javac, and third-party languages.

If you encounter an error when running tests or executables along the lines of Library Not
Found, you might need to use OS X’s otool and install_name_tool utilities to specify the proper
library identifier to the linker. In earlier versions of BDB XML 2.x, the resulting libraries did not
always have the proper Xerces identifier specified. If this is the case, you might need to do the same
thing for Perl and Python libraries. Run otool on the .so, .bundle, or .dylib files to determine
whether the compiler included the correct Xerces identifier. This problem has been corrected in
BDB XML 2.2 and later.

Some versions of OS X had dynamic loading problems with conflicting namespaces, resulting
in Multiple Definition errors. These problems can be fixed by setting the environment variable
MACOSX_DEPLYMENT_TARGET to 10.3 (or current OS X version) and reconfiguring/rebuilding BDB XML.
Refer to the ld(1) and dyld(1) man pages for more information on symbol namespaces on OS X.

CHAPTER 3 ■ INSTALLATION AND CONFIGURATION30

6668ch03.qxd 7/17/06 6:42 PM Page 30

FreeBSD
The ideal FreeBSD installation requires version 5.3 or later, with gcc/g++ 4.1 or later. The latter can
be installed simply from ports, if available:

$ cd /usr/ports/lang/gcc41; make install; make clean

You then need to specify the proper utilities to the buildall.sh script, being certain to have
those programs in your path:

$ buildall.sh -m gmake -c gcc41 -x g++41

In versions of BDB XML before 2.2, it was easier to compile language bindings separate from
the base installation, but it is now fairly easy to install them with buildall.sh using the parameters
listed previously.

Some FreeBSD 5.4 users have reported the error:

Fatal error 'Spinlock called when not threaded.' at line 87 in file
/usr/src/lib/libpthread/thread/thr_spinlock.c (errno = 0)

This problem can be remedied by creating a file /etc/libmap.conf to map libc_r to
libpthread. See the libmap.conf man page for more information.

Building Bindings
The easiest way to build language bindings is to use the buildall.sh utility. If you have the need to
build individual language bindings separately, refer to the following section. The source directories
for each binding are at dbxml/src/language within your BDB XML distribution.

Most of the language bindings include examples that require you to populate a sample data-
base, similar to the C++ examples earlier in this chapter. Refer to the README with each source
directory for more information on using the examples.

Perl
Paul Marquess, the author of many popular Perl modules, maintains the Perl bindings. They are at
dbxml/src/perl within the BDB XML distribution and use an installation familiar to Perl users.

The main Perl package is Sleepycat::DbXml. Each Perl package or class has accompanying POD
documentation for reading with perldoc:

$ perldoc Sleepycat::XmlContainer

(Note that the individual packages are not hierarchical to Sleepycat::DbXml.) The best resource
for learning the Perl interface is the test suite (in DbXml/t) and the example scripts in examples/
gettingStarted, which duplicate the functionality of the examples already shown. Each takes
command-line arguments; run them without arguments to see the proper syntax:

$ perl queryWithContext.pl
This program illustrates how to query for documents that require namespace
usage in the query. You should pre-load the container using
loadExamplesData.[sh|cmd] before running this example. You are only required
to pass this command the path location of the database environment that you
specified when you pre-loaded the examples data:

-h <dbenv directory>

CHAPTER 3 ■ INSTALLATION AND CONFIGURATION 31

6668ch03.qxd 7/17/06 6:42 PM Page 31

Unix

You must have a working perl binary in your path of version 5.6.1 or greater. It is strongly recom-
mended that you compile both BDB XML and the Perl bindings using the same compiler that you
used to create the perl binary. If this is not the case, consider building a new binary using the more
recent stable compiler.

Edit the config file to specify the location of the BDB XML libraries and your desired installa-
tion location. You can then proceed with the build and install:

$ perl Makefile.PL
$ make
$ make test
$ make install

This will place the Perl API in the location determined by the Perl binary as appropriate.

Windows

Visual Studio includes a file vcvars32.bat to set up your environment to include the nmake.exe
and cl.exe executables in your PATH. After running this script, verify your configuration in the
config.win32 file before proceeding with the build: perl Makefile.PL -config config.win32.

$ nmake
$ cd Db
$ nmake test
$ cd ..\DbXml
$ nmake test
$ nmake install

Python
The Python bindings require Python 2.3 or newer. As with Perl, use the same compiler to build
both Python and BDB XML. You also need the bsddb3 Python module installed; it is included in
the Python core in newer versions; however, this module must be compiled against the same ver-
sion of Berkeley DB that you are using for BDB XML. Python does include Berkeley DB, but not a
version compatible with BDB XML. To install the included bsddb3 package use the following:

$ cd dbxml-2.x/dbxml/src/python/bsddb3-4.x
$ python setup.dbxml.py build
$ python setup.dbxml.py install

You can then build and install the dbxml module:

$ cd ..
$ python setup.py build
$ python setup.py install

Python examples are at dbxml-2.x/dbxml/examples/python.

PHP
The source for the PHP bindings is at dbxml-2.x/dbxml/src/php; the Berkeley DB extension php_db4
must be already installed. As with other language bindings, the PHP API requires that both BDB
XML libraries and the PHP extension be linked with the version of Berkeley DB 4 included with BDB
XML. You need to rebuild the php_db4 extension if one is already installed using a different version
of BDB. The source for the extension is included with the BDB XML distribution at dbxml-2.x/
db-4.x/php_db4; installing this version will ensure compatibility.

CHAPTER 3 ■ INSTALLATION AND CONFIGURATION32

6668ch03.qxd 7/17/06 6:42 PM Page 32

Installation of the dbxml extension is straightforward from within this directory:

$ phpize
$./configure --with-dbxml=path
$ make
$ make install

The configure script also provides options for specifying the location of BDB and other
libraries; then adding to your php.ini file:

extension=db4.so
extension=dbxml.so

See the README file in the PHP source directory for additional caveats concerning Linux and
Mac OS X installs.

PHP examples are included in the examples/ directory within the PHP source tree.

Conclusion
Berkeley DB XML has a simple installation procedure for many operating systems and language
interfaces. This same ease carries over to using the product, as you’ll see in the following chapters.

If you have problems building and installing BDB XML, consult the BDB XML mailing list:
xml@sleepycat.com. There is a good list archive at http://www.nabble.com/Berkeley-DB-Xml-f730.html,
with many installation questions already answered. Otherwise, subscribe to the list (see http://
dev.sleepycat.com/community/discussion.html), ask your question, and helpful individuals will
point you in the right direction.

CHAPTER 3 ■ INSTALLATION AND CONFIGURATION 33

6668ch03.qxd 7/17/06 6:42 PM Page 33

6668ch03.qxd 7/17/06 6:42 PM Page 34

Getting Started

With a working Berkeley DB XML installation, you’re ready to jump into the concepts behind an
embedded XML database. Sleepycat has made this easy with a simple database shell, dbxml, which
I’ll use to illustrate the basics of creating database files, inserting and deleting XML documents,
creating indexes, and of course, querying the collection. The lessons here translate to all language
bindings, making them a convenient introduction to the system. Consider this chapter a quick tour
of BDB XML.

Core Concepts
As you saw in Chapter 3, “Installation and Configuration,” BDB XML applications can be written in
various programming languages. Each uses the BDB XML libraries directly from the application: no
database server will be queried over the network. The program you write opens and closes the data-
base files—file permissions at the level of your operating system behave as expected (insofar as the
expectations are accurate), and database files can be treated as you do any BDB file.

The architecture of your specific application will depend on the language and your environ-
ment. You can write command-line programs, not unlike the examples included with BDB XML, for
users to perform queries on databases. You can use BDB XML databases as part of a website using
PHP or Perl scripts (or mod_perl modules), which enables visitors to browse and manipulate your
database. Multiple applications can access the same database files, from various programming lan-
guages, including the BDB XML shell, which I will describe in the next section.

BDB XML documents are stored in files called containers. A container is identical to a database
for our purposes, holding all records—XML files—as well as document metadata and indexes. XML
files can be stored in different formats, depending on your needs.

Containers are stored in environments. An environment is simply a file directory that BDB XML
uses to store containers as well as logs when logging is enabled for use in transactions and recovery.
Environments are the “operating space” for your databases. You don’t need to explicitly use them,
and you can have many environments with a BDB XML installation.

The Shell
The BDB XML build places an aptly named binary dbxml in the directory dbxml-2.x/install/bin.
(The Windows binary install adds this right to your Start menu, whereas the source install places
the file in your dbxml-2.x/bin directory.) This program gives you access to the bulk of BDB XML’s
functionality without having to write any code of your own, making it useful for testing, mainte-
nance, and of course, learning. Because database containers are self-contained and require zero
configuration, experimenting with the shell in a file directory gives you a good opportunity to

35

C H A P T E R 4

6668ch04.qxd 7/17/06 6:52 PM Page 35

learn with no risk to your environment (we’re assuming here that you don’t do so in your root or
system directories).

Shell Options
The dbxml shell gives you several command-line options (see Table 4-1), none of which we’ll be
using immediately. They can be listed with the -h option.

Table 4-1. Abbreviated List of Shell Command-Line Options

Option Description

-h directory Specifies a directory to be used as the database environment; default is
the current working directory (.)

-c Creates a new environment in the directory specified by -h

-s script Runs a file script in a noninteractive mode

-t Specifies transaction mode, requiring transactions for database writes

-V Outputs BDB XML version

-P password Specifies a password for the database

Running the shell gives you a database command prompt:

dbxml>

From here, typing help (ending with a line feed) will list the available commands; help followed
by one of the listed commands will give you a description and usage syntax:

dbxml> help openContainer

openContainer -- Opens a container, and uses it as the default container

Usage: openContainer <container> [[no]validate]
This command uses the XmlManager::openContainer() method. It also sets
the default collection, using the XmlQueryContext::setDefaultCollection()
method.

Note that the usage text includes the class method used by the command. This makes for a
useful reference because you can experiment with method functionality from within the shell and
refer to the class documentation for it.

Creating Containers
Let’s create a container in the current directory using the createContainer command. I’ll continue
using the Wordnet XML described in the previous chapters and name the database accordingly:

dbxml> createContainer synsets.dbxml

Creating document storage container with nodes indexed

CHAPTER 4 ■ GETTING STARTED36

6668ch04.qxd 7/17/06 6:52 PM Page 36

The database name and extension here are arbitrary. A file has just been created, synsets.dbxml,
and opened by the shell, ready to query. These are binary files, understood only by the BDB XML
libraries, and as such should not be edited directly.

We won’t delve in to indexes just yet, but note that all containers have a default index created,
which is a metadata index for document names. We will provide unique names to the database as
we insert documents (of course, the filenames), and these will be automatically indexed.

■Tip If you use the BDB XML shell (or any similar command-line program) a lot on Unix, a wrapper like rlwrap
can add input history and command completion to dbxml. When demonstrating functionality, I invoke the shell with
the following command (in a shell script):

/usr/local/bin/rlwrap -c -H .rlhistory -f .rlhistory -l log.txt -r /usr/bin/dbxml

This lets me page through my shell history with the up arrow key, and complete filenames with the Tab key, retain-
ing history between shell sessions.

Adding and Deleting Documents
With our new database open, we can insert an XML document using the putDocument command. I’ll
start with the now-familiar baseball lexicon example. Like many programs, the dbxml shell enables
commands to span many lines when each line is terminated with a backslash (\). When placing an
XML document into the shell as text, we can enclose it in single-quotes:

dbxml> putDocument 14861 '
<Synset fileVersion="1.0" pos="n">
<Id>14861</Id>
<WnOffset version="2.1" pos="n">02772480</WnOffset>
<LexFileNum>06</LexFileNum>
<SsType>n</SsType>
<Word lexId="0">baseball</Word>
<Pointers>
<Hypernym>14746</Hypernym>
<Hypernym>14866</Hypernym>

</Pointers>
<Gloss>a ball used in playing baseball</Gloss>

</Synset>
' s

Document added, name = 14861

The first argument for putDocument is 14861, which is the document name. The s after the XML
string tells the shell that the string is serialized XML. The shell enables documents to be inserted as
strings, files, or XQuery expressions. The file syntax is as follows:

dbxml> putDocument 14861 '../wordnet/14861.xml' f

putDocument failed, Error: Document exists: 14861

CHAPTER 4 ■ GETTING STARTED 37

6668ch04.qxd 7/17/06 6:52 PM Page 37

Of course, attempting to place another document with the same name into the container
results in a Document Exists error. The default index enforces uniqueness on this piece of metadata;
I will discuss this at length in Chapter 6, “Indexes.”

■Note Notice in the example that a record’s Id value and pointers to other records don’t use the full filename
(with .xml), so it will be more convenient (and avoid a lot of concat() XPath calls) to simply use the number as the
filename going forward.

We can delete the file from the container using its name:

dbxml> removeDocument 14861

Document deleted, name = 14861

To demonstrate a bit more shell functionality, let’s assume that I have a large collection of XML
files in the directory ../wordnet/ (relative to my current working directory). I will add three of those
files to my container as follows:

dbxml> putDocument 14861 '../wordnet/14861.xml' f

Document added, name = 14861

dbxml> putDocument 14862 '../wordnet/14862.xml' f

Document added, name = 14862

dbxml> putDocument 14863 '../wordnet/14863.xml' f

Document added, name = 14863

■Tip For the impatient, the dbxml shell permits shortcuts for its commands, using the smallest starting
substring, with the commands in alphabetical order. That is, the commands create and even cr are recognized
as createDocument, but c alone is short for commit. The BDB XML distribution also supplies a command,
dbxml_load_container, which shortcuts the addition of many documents to a container.

Querying Containers
The query command takes as argument a block of XQuery code, which for now we’ll limit to XPath
with a collection() test at the front:

dbxml> query 'collection("synsets.dbxml")/Synset/Word[contains(., "baseball")]'

CHAPTER 4 ■ GETTING STARTED38

6668ch04.qxd 7/17/06 6:52 PM Page 38

3 objects returned for eager expression
'collection("synsets.dbxml")/Synset/Word[contains(., "baseball")]'

We can then print out the results with print:

dbxml> print

<Word lexId="0">baseball</Word>
<Word lexId="0">baseball bat</Word>
<Word lexId="0">baseball cap</Word>

Notice that we’re getting back element nodes from the query. Had we appended a text() to our
query, we would get only the text nodes:

dbxml> query 'collection("synsets.dbxml")/Synset/Word[contains(., "baseball")]/string()'

3 objects returned for eager expression
'collection("synsets.dbxml")/Synset/Word[contains(., "baseball")]/string()

dbxml> print

baseball
baseball bat
baseball cap

Similarly, had we wanted to get back entire documents, we could have put everything after
/Synset in a predicate, causing the query to select the root elements:

dbxml> query 'collection("synsets.dbxml")/Synset[contains(Word, "baseball")]'

3 objects returned for eager expression
'collection("synsets.dbxml")/Synset[contains(Word, "baseball")]'

dbxml> print

<Synset fileVersion="1.0" pos="n">
<Id>14861</Id>
<WnOffset version="2.1" pos="n">02772480</WnOffset>
<LexFileNum>06</LexFileNum>
<SsType>n</SsType>
<Word lexId="0">baseball</Word>
<Pointers>
<Hypernym>14746</Hypernym>
<Hypernym>14866</Hypernym>

</Pointers>
<Gloss>a ball used in playing baseball </Gloss>

</Synset>
...

CHAPTER 4 ■ GETTING STARTED 39

6668ch04.qxd 7/17/06 6:52 PM Page 39

Note that we aren’t requiring any structure on our documents at this point (this will be
demonstrated in Chapter 5, “Environments, Containers, and Documents”). For now, consider that
the lack of constraints on our container makes it very flexible. We can use the document structure
to find differences between documents. For example, to find records that have holonym pointers,
which indicate objects that are “part of” the object for that record, we can query for the existence
of an element:

dbxml> query 'collection("synsets.dbxml")/Synset/Pointers/Holonym'

2 objects returned for eager expression
'collection("synsets.dbxml")/Synset/Pointers/Holonym'

dbxml> print

<Holonym type="component">18925</Holonym>
<Holonym type="component">15116</Holonym>

If we looked at the files for these two numbers, we’d find the first to be “grip” or “handle” (part
of the baseball bat) and the second “bill” or “visor” (part of the baseball cap). Of course, after we
have added them to the database, we can get all this information with a single query.

Indexing Containers
As we add more documents to the container, we’ll start to notice a slow response from the queries
because BDB XML has to process each document. Indexes created on a container can significantly
reduce the time required for queries to return results. Whenever an index exists for the elements
used in a query, the index is used rather than the document itself, making lookups very fast.

We can see the container’s indexes with the listIndexes command:

dbxml> listIndexes

Index: unique-node-metadata-equality-string for node
{http://www.sleepycat.com/2002/dbxml}:name
1 indexes found.

As mentioned, this metadata name index is added by default when a container is created; it con-
tains the document names used as the first argument to putDocument when a document is added.

I will examine indexes in depth in Chapter 6. For now, we’ll add an index for our Word element:

dbxml> addIndex "" Word node-element-equality-string

Adding index type: node-element-equality-string to node: {}:Word

The first argument to addIndex is a namespace Uniform Resource Identifier (URI), which we
aren’t using; the second is the node name; and the third is an index identifier. This string has four
parts that determine the indexing strategy. In this example, we created a node index (meaning it will

CHAPTER 4 ■ GETTING STARTED40

6668ch04.qxd 7/17/06 6:52 PM Page 40

index any nodes Word regardless of where they occur in a document) on an element (as opposed to
an attribute or metadata), optimized for equality tests (as opposed to presence or substring queries),
with a string index syntax. A fifth part, not used in this example, can be added to force uniqueness for
certain data between records within a container.

■Note An index’s syntax type does not limit the type of values allowed for the indexed data. Rather, it deter-
mines the strategy for the underlying index format.

Now, any query that entails a string equality test on the Word element will use this index. Obvi-
ously, the choice of indexing strategies is important when searching large collections of documents
because any query that has to access data not indexed needs to process each document in the data-
base, creating long response times.

Deleting an index requires the same parameters used when it was added. We can see them by
listing the indexes:

dbxml> listIndex

Index: node-element-equality-string for node {}:Word
Index: unique-node-metadata-equality-string for node
{http://www.sleepycat.com/2002/dbxml}:name
2 indexes found.

And delete the Word index:

dbxml> delIndex "" Word node-element-equality-string

Deleting index type: node-element-equality-string from node: {}:Word

Indexing itself is a potentially expensive operation because indexing must process every docu-
ment in the collection. Overly frequent reindexing is therefore something that is possible but should
be avoided, especially on production databases. As with relational databases, an index definition
causes BDB XML to update indexes each time a document is added, modified, or deleted. Thus,
indexes should be created before any documents are inserted.

The impact of indexes on queries, as well as the indexes touched by various queries, can be
examined by raising the shell’s verbosity:

dbxml> setVerbose 2 2

It will cause the shell to output query times as well as the indexes that were used during the
query. I will later use this information to illustrate indexing strategies. Additionally, the shell
provides a command queryPlan to parse a query string and examine its index usage without per-
forming a search.

Using XQuery
Everything demonstrated in the queries thus far is written in XQuery because XQuery inherits much
of its features and syntax from XPath; in fact, XQuery and XPath 2.0 share the same functions and

CHAPTER 4 ■ GETTING STARTED 41

6668ch04.qxd 7/17/06 6:52 PM Page 41

operators. XQuery is a full-featured query language in its own right, enabling the reshaping of results
and dynamic query construction with its own miniscripting language, dubbed FLWOR expressions,
named for its main clauses (for, let, where, order, return).

Consider the case of adding documents. The putDocument shell command has a parameter q
(in addition to the s for string and the f for file already demonstrated), identifying the query argu-
ment as an XQuery statement. The statement returns a value that gets used as the argument to
putDocument. Knowing we have 117,597 XML files (in the Wordnet synset example), we can add all
of them at once:

dbxml> putDocument "" '
for $i in (1 to 117597)
return doc(concat("file:./wordnet/", $i, ".xml"))
' q

Yes, this query will take some time because the processor must open each file, parse it, evalu-
ate it for inclusion in any existing indexes, and then write to the database. Note that when issuing
putDocument with an XQuery statement, the first argument to putDocument is empty. When an
XQuery statement is being used to generate documents, the document name cannot be specified
with the command. Instead, BDB XML generates document names that by default have the syntax
dbxml_1cb5e, the last characters being a generated unique hexadecimal number. (You can change
this definition from the API.)

For the sample Wordnet collection, we want document names that share numbers with the
source filenames, so I will not be using these autogenerated ids. As a preview of the API, note that
the following Python script accomplishes the same, using the filename as the document name.

from bsddb3.db import *
from dbxml import *
import os

mgr = XmlManager()
uc = mgr.createUpdateContext()
container = mgr.openContainer("synset.dbxml")
dir = "wordnet"
for file in os.listdir(dir):

content = open("wordnet/" + file).read()
container.putDocument(file, content, uc)

Because XQuery can output XML, it can be used to dynamically create documents for inser-
tion. This example populates the database with 100 documents:

dbxml> putDocument "" '
for $i in (0 to 99)
return
<entry id="{$i}">
{

if ($i > 50)
then <second_half>yes</second_half>
else ""

}
<description>Description of {$i}</description>

</entry>' q

XQuery expressions can also reshape query results, enabling you to perform XML transforma-
tions within an expression. Note here that we have indexed the container for Word and Id elements;
it would be a slow query otherwise. This example also demonstrates the use of variables within
XQuery to hold node sets and then to query them directly.

CHAPTER 4 ■ GETTING STARTED42

6668ch04.qxd 7/17/06 6:52 PM Page 42

dbxml> query '<baseballs>
{
for $baseball in

(collection("synsets.dbxml")/Synset[Word = "baseball"])
return

<gloss>{$baseball/Gloss/string()}</gloss>
}

</baseballs>'

1 objects returned for eager expression '<baseballs> ... '

dbxml> print

<baseballs><gloss>a ball used in playing baseball </gloss><gloss>a ball game played with
a bat and ball between two teams of nine players; teams take turns at bat trying to score
runs; "he played baseball in high school"; "there was a baseball game on every empty
lot"; "there was a desire for National League ball in the area"; "play ball!"
</gloss></baseballs>

Much is possible with XQuery. Multiple containers can be queried, making set processing
(joins, unions, intersections) possible. Results can be flexibly ordered. User functions can be writ-
ten, making recursive processing of results fairly trivial. The power of BDB XML is fully realized due
to XQuery expressions atop its indexes. I examine XQuery more fully in Chapter 7, “XQuery with
BDB XML.”

Metadata
Regardless of the operating system, file systems associate metadata with the files. This data includes
any information not contained within the file itself: the filename, file permissions, creation or mod-
ification dates, and file ownership are all types of metadata. BDB XML enables any metadata of your
invention to be attributed to documents and indexed just as with document contents.

I have already demonstrated one type of metadata, document names, which are indexed by
BDB XML by default. Metadata is set in the shell using the setMetaData command, which takes the
document name; a URI for the metadata; plus a metadata name, type, and value. Suppose I want to
attribute a document to a certain person without changing the document’s content (by adding a
<user/> element, for example). I could do this by setting metadata on the document:

dbxml> setMetaData 8872 '' user string dbrian

MetaData item 'user' added to document 8872

Metadata can be indexed and used within queries using by using the dbxml:metadata name-
space (implemented as a function) for lookups:

dbxml> addIndex '' user node-metadata-equality-string

Adding index type: node-metadata-equality-string to node: {}:user

CHAPTER 4 ■ GETTING STARTED 43

6668ch04.qxd 7/17/06 6:52 PM Page 43

dbxml> query 'collection("synsets.dbxml")/Synset[dbxml:metadata("user")] '

1 objects returned for eager expression '
collection("synsets.dbxml")/Synset[dbxml:metadata("user")]
'

You can see the names of metadata items for a given document using the getMetaData command:

dbxml> getMetadata 8872

Metadata for document: 8872
http://www.sleepycat.com/2002/dbxml:name
user

I explore metadata at more length in Chapter 5.

Transactions
When dbxml is invoked with the -t option, the shell permits transactions. You’ll notice a log file
created in your current working directory, unless otherwise specified with the -h option. A better
way to maintain transactional containers is to create a BDB XML environment programmatically,
described in a later chapter. The dbxml shell does provide a -c command-line option for creation
of an environment, but this doesn’t permit control over the initial environment settings. The
point here is that you don’t need a configured BDB XML environment to use transactions.

The shell command transaction signals the beginning of a transaction, commit (or a sub-
sequent transaction) tells the shell to commit the current transaction, and abort cancels the
current transaction.

dbxml> transaction

Transaction started

dbxml> putDocument 189861 '<Synset fileVersion="1.0" pos="n"/>' s

Document added, name = 189861

dbxml> commit

Transaction committed

dbxml> transaction

Transaction started

CHAPTER 4 ■ GETTING STARTED44

6668ch04.qxd 7/17/06 6:52 PM Page 44

dbxml> removeDoc 189861

Document deleted, name = 189861

dbxml> commit

Transaction committed

Conclusion
BDB XML’s shell utility is just an API interface, exposing nearly all the features offered by the API,
making it an excellent tool for experimentation and learning. It offers functionality not discussed
here, including the ability to modify documents, get container information, and process multiple
containers simultaneously. Keep in mind that any queries you can run programmatically can also
be run in the shell. When you need to debug query problems in a larger application, there is no bet-
ter place to start than with the shell.

CHAPTER 4 ■ GETTING STARTED 45

6668ch04.qxd 7/17/06 6:52 PM Page 45

6668ch04.qxd 7/17/06 6:52 PM Page 46

Environments, Containers,
and Documents

The three core components of a BDB XML database are environments, containers, and documents.
This chapter examines each from the dbxml shell as well as the Python API’s XmlManager class.
Other languages are covered in later chapters, but each API translates fairly easily from the exam-
ples provided here. This chapter presents the concepts with an overview of their capability, rather
than a complete explanation of their operation. Consider it a look at various pieces of functional-
ity, touching on the physical concepts and many of the programming classes used when working
with BDB XML.

Environments
An environment is Berkeley DB’s way of managing the database memory cache, locking, and fea-
tures such as transactions and logging. At its simplest, an environment is simply the location (the
directory) at which your database files are stored. Note that environments are not specific to BDB
XML but are also used by the underlying DB system. Thus, the information presented here is com-
mon to both BDB XML installations, as well as non-XML Berkeley DB applications.

■Tip Because BDB XML uses the same underlying DB format as regular Berkeley DB databases, an environment
can hold both XML and non-XML containers.

When databases are stored on disk, their location is typically an environment. A single environ-
ment can contain zero to many databases, and many environments can exist on a single file system.
The accessing program or API sets the configuration for each environment. This is an important dif-
ference between networked and embedded databases. Whereas a networked database maintains
configuration and data such as access permissions at the database server (and usually using a data-
base for that information), embedded databases require that the program itself maintain most of
this data. (DB environments can contain a configuration file, discussed later.) Because the applica-
tion is directly opening the database files, no layer exists to enforce configuration or access rules.
The result is less overhead (with one less layer), but also less at-the-ready functionality.

■Tip It’s possible to create environments and containers in memory, which never get written to disk (other than
being paged there by virtual memory management). In fact, this is the default for environments from the dbxml shell.

47

C H A P T E R 5

6668ch05.qxd 7/14/06 2:18 PM Page 47

Creating and Opening Environments
A DB environment can be created implicitly, as with most of the examples thus far. However, only
by creating an environment explicitly can you use transactional and other advanced features. The
-c option to the dbxml command-line tool will create a database environment in the directory speci-
fied by -h:

$ dbxml -c -h myenv/
dbxml> quit
$ ls myenv/

__db.001 __db.002

Notice that the directory is populated with database files (we won’t go into detail on the func-
tion of these files). As demonstrated in Chapter 4, “Getting Started,” you can also use the -t option
to enable transactions for a given shell session.

Creating an environment using the BDB XML API enables more options. It is done using the
DBEnv (or DbEnv) class, which gets imported with the dbxml package.

from bsddb3.db import *
from dbxml import *

environment = DBEnv()
environment.open("myenv",

DB_CREATE|DB_INIT_LOCK|DB_INIT_LOG|DB_INIT_MPOOL|
DB_INIT_TXN|DB_RECOVER, 0)

environment.close(0)

After the environment object is constructed, its open method is called, with the first parameter
the environment’s directory path, the second a series of flags (these are bitwise or’d together), and
the last a Unix file mode, ignored on Windows and with a default of readable and writable by owner
and group, specified by 0. The environment is then closed, which can be done explicitly as shown or
by letting the XmlManager class do this automatically.

An incomplete list of flags with their meanings is shown in Table 5-1.

Table 5-1. Abbreviated List of Environment Open Flags

Flag Description

DB_CREATE Creates the environment if it doesn’t already exist

DB_INIT_LOCK Initializes the locking subsystem, used with concurrent reads and
writes

DB_INIT_LOG Initializes the logging subsystem, used for database recovery

DB_INIT_MPOOL Initializes the memory pool subsystem, providing a cache required for
multithreaded applications

DB_INIT_TXN Initializes the transaction subsystem, permitting recovery in case of an
error condition within a transaction

DB_RECOVER Initializes recovery, ensuring that the database files agree with the
database logs

Similar flags are passed to many of BDB XML’s methods and constructors to modify their behav-
ior. They are covered fully in the API chapters (Chapters 8 through 12) as well as the API reference in
Appendix B, “BDB XML API Reference.”

CHAPTER 5 ■ ENVIRONMENTS, CONTAINERS, AND DOCUMENTS48

6668ch05.qxd 7/14/06 2:18 PM Page 48

An opened environment object can then be passed to the XmlManager constructor:

manager = XmlManager(environment, 0)

The second argument (0) indicates no flags for the constructed XmlManager object. Possible
flags include DBXML_ALLOW_EXTERNAL_ACCESS to permit XQuery queries to access data sources exter-
nal to a container (network or disk files), and DBXML_ALLOW_AUTO_OPEN to automatically open and
close unopened containers when an XQuery requires it. As with the environment open() method,
these flags are bitwise or’d when used as a constructor argument.

■Note Some language APIs implement slightly different usages with the flags. For example, the Java API uses
configuration objects in place of flags for all options.

Additional Environment Configuration
In addition to those already mentioned, the DBEnv class provides methods for configuring and
manipulating environments. These methods include dbremove() for deleting databases and
dbrename() for moving them.

The DBEnv method set_flags() provides a long list of flags for manipulation of the environ-
ment’s behavior, many specific to debugging and fine performance tuning. These flags can also be
stored in a configuration file called DB_CONFIG within the environment directory. In this case, a sin-
gle configuration line begins with set_flags, followed by a single flag parameter. For example, to
cause an environment to automatically remove log files that are no longer needed (not necessarily
the best practice), add this line to the DB_CONFIG file:

set_flags DB_LOG_AUTOREMOVE

Flags set in the configuration file will silently overrule application configuration. For this reason,
it’s a good idea to set flags in the configuration file when you want them enforced for the environ-
ment because setting flags with the set_flags() method typically affects only that environment
handle or object instance. Table 5-2 shows an abbreviated list of settable flags.

Table 5-2. Abbreviated List of Environment Set Flags

Flag Description

DB_CDB_ALLDB Forces DB applications to perform environment-wide locking, rather
than per-database locking

DB_DSYNC_LOG Flushes writes to the log files before returning from log write calls

DB_LOG_AUTOREMOVE Removes log files that are no longer in use

Other set_* methods enable you to change an environment’s cache size, set error callbacks
and error message prefixes, and configure locking timeouts. Lastly, DBEnv has some informational
methods to get the home directory for the environment, retrieve the flags used to open the environ-
ment, and print environment statistics. (Complete lists of these methods and their uses are found in
Appendix B.)

CHAPTER 5 ■ ENVIRONMENTS, CONTAINERS, AND DOCUMENTS 49

6668ch05.qxd 7/14/06 2:18 PM Page 49

BDB XML includes several command-line utilities (in install/bin for Unix builds) that take an
environment path as their argument. The -h option is standard for specifying the environment (or
home directory) path to all of these. For example, the db_archive utility outputs the filenames of
any logs that are no longer in use by the environment:

$ db_archive -h myenv/

The resulting list of files can then be moved to backup media or deleted without interfering
with the operation of the databases in that environment.

■Caution Permanently deleting log files not in use (as opposed to moving them to a restorable location) will
usually make catastrophic recovery (in which the database itself is lost instead of just corrupted) impossible.

For a full reference of command-line utilities and their uses, see Chapter 13, “Managing
Databases.”

Containers
A BDB XML database is a container, which is a single file on disk that contains all documents within
that database, as well as any indexes or metadata. Containers are created within a database envi-
ronment (as files are created within directories). In previous chapters, in which containers were
created in the absence of an explicit environment, the XmlManager object itself created a rudimen-
tary environment for the storage of that container.

Containers do not themselves have or maintain any configuration data that does not corre-
spond to the documents they contain. That is, any database settings that concern rules such as file
locking or performance settings such as cache behavior are not part of containers, so you shouldn’t
look for them here. All such options are set at the environment to which a container belongs.

One more relationship between environments and containers warrants mention: stand-alone
containers are portable—which means that you can copy the file itself to another location and still
use it and all its indexes, assuming that you didn’t copy it in midwrite—but contain no historical or
transactional data. Thus, if you have not configured an environment with logging and transactions,
recovery in case of database corruption will not be possible. A database’s portability is a nice benefit
of an embedded database, but keep in mind that the environment supplies everything that is not
definable as “live data.”

Creating and Opening Containers
Containers are easily created by using the dbxml shell, as previously demonstrated:

dbxml> createContainer synsets.dbxml

Creating document storage container with nodes indexed

This example creates the container file, synsets.dbxml, and opens it for operation. The API is
almost identical:

manager = XmlManager(environment, 0)
container = manager.createContainer("synsets.dbxml")

CHAPTER 5 ■ ENVIRONMENTS, CONTAINERS, AND DOCUMENTS50

6668ch05.qxd 7/14/06 2:18 PM Page 50

The createContainer() method has multiple optional parameters, including a transaction
object and a series of container flags. The following example creates a new container and sets a vali-
dation flag, causing XML documents subsequently loaded to be validated if they refer to a DTD or
XML Schema:

container = manager.createContainer("synsets.dbxml", DBXML_ALLOW_VALIDATION)

Other common flags to create containers include DB_RDONLY to open a container in read-only
mode (in which attempted writes will fail) and DBXML_TRANSACTIONAL to enable transaction support
for the container.

Existing containers can be opened within the dbxml shell using the openContainer command:

dbxml> openContainer synsets.dbxml

The Python API’s openContainer() method has the same format as closeContainer():

container = manager.openContainer("synsets.dbxml")

The flags for openContainer() are the same as those for createContainer(). In fact, the meth-
ods are the same, with createContainer() always enforcing the DB_CREATE and DB_EXCL flags, which
create the database if it doesn’t exist and throw an error if it does, respectively. Thus, containers can
be created using openContainer() and these flags. A complete list is found in the API chapters. A
third XmlManager method, existsContainer(), enables you to test for the existence of a container
with a single argument: the name of the container.

Container Types
BDB XML supports two types of containers, each entailing a slightly different storage technique.
The container type can be set only at the time a container is created because it affects how docu-
ments are stored in the container and how its documents are indexed.

Containers of type Wholedoc store XML documents exactly as they are given to the storage
methods, retaining document white space. By contrast, Node containers process the document prior
to storage and then store documents as individual nodes, with a single leaf node and all its attributes
and attribute values. Thus Node containers are generally faster to query, but Wholedoc containers
retrieve entire documents (as opposed to just nodes or values) more quickly because they don’t have
to reconstruct the document as with containers of type Node.

■Note Wholedoc containers are necessary when an application requires byte equivalence for its documents,
for example, to retain checksums.

A good rule is to always use the Node type (the default) unless you expect to often retrieve entire
XML documents or if your documents are small enough that the query advantage of Node containers
is negligible. The Wholedoc type is intended to store and retrieve small documents; storing docu-
ments that approach or are greater than a megabyte using Wholedoc is discouraged, but in practice
this will depend on your own application’s needs, indexing strategy, and so on.

A container type can be set within the dbxml shell when creating a container using the argument
after the container name:

dbxml> createContainer synsets.dbxml d

Creating document storage container

CHAPTER 5 ■ ENVIRONMENTS, CONTAINERS, AND DOCUMENTS 51

6668ch05.qxd 7/14/06 2:18 PM Page 51

The d in this example forces the creation of a Wholedoc container; an n would force node stor-
age and is the default. The same is done programmatically via the API with the createContainer()
method with an argument after the flags:

container = manager.createContainer("synsets.dbxml", DBXML_ALLOW_VALIDATION,
XmlContainer.WholedocContainer)

Using the setDefaultContainerType() method of XmlManager, you can change the default con-
tainer type and then omit it from the createContainer() call:

manager.setDefaultContainerType(XmlContainer.WholedocContainer)
container = manager.createContainer("synsets.dbxml")

An additional container flag warrants mention in the context of container types. Normally
when using containers of type Node (again, the default and generally recommended), BDB XML
indexes documents at the document level. This means that index lookups return a list of documents
instead of the individual nodes. You can change this behavior using the DBXML_INDEX_NODES flag at
container creation time (but not after). The result will be that index lookups return nodes instead of
documents. This can be useful when dealing with large documents and needing to get node values
to match a query. DBXML_INDEX_NODES is discussed in more detail in Chapter 6, “Indexes.”

Some Container Operations
Most of the common BDB XML operations are performed with or on containers. Both
createContainer() and openContainer() return objects of class XmlContainer. This class in turn
provides methods for many operations on the container, including adding, updating, and deleting
documents; adding and removing indexes; and retrieving documents after a database query. Most
of these functions are also available in the dbxml shell.

Adding Documents to a Container
The XmlContainer class supplies the method putDocument() to simply add documents to the con-
tainer. It is versatile in that documents can be strings, XmlDocuments, or input streams. This example
adds a document with the name doc12 to the container by using a string:

container = manager.openContainer("test.dbxml")
container.putDocument('doc12', '<document id="12">test</document>',
manager.createUpdateContext())

Keep in mind that adding many documents before indexes have been created for a container
will mean expensive indexing later. Before populating your container, be sure to read the next chap-
ter and create indexes for your database.

Listing All Documents in a Container
To verify a container’s contents, it can sometimes be useful to retrieve all documents in that con-
tainer. Using the Python API, you can use the XmlManager.getAllDocuments() method. This will give a
glimpse at working with query results, although we aren’t supplying an actual query. This call returns
an XmlResults object, which is BDB XML’s interface for efficiently iterating results of a query.

container = manager.openContainer("synsets.dbxml")
results = container.getAllDocuments(0)
for value in results:

document = value.asDocument()
print document.getName()

CHAPTER 5 ■ ENVIRONMENTS, CONTAINERS, AND DOCUMENTS52

6668ch05.qxd 7/14/06 2:18 PM Page 52

This will output the name for each document in the container. The value here is of class
XmlValue, which has a method asDocument() to retrieve the value as a document, returning an
object of class XmlDocument. Alternatively, a value could be retrieved as a string or node if our
results were from a query.

Performing Queries and Listing Results
The most common operation on containers is, of course, queries. Queries can be “prepared” as with
most SQL implementations, or executed on the fly. Queries are executed by using the XmlManager
object instead of a container object because they can include multiple (open) containers. This is
why the collection() query prefix is used.

This example issues a query and outputs the number of results:

container = manager.openContainer("synsets.dbxml")
results = manager.query("collection('synsets.dbxml')/Synset/Word",
manager.createQueryContext())
print results.size()

Note the second argument to the query() method. Queries require a context, which provides
data such as namespace mappings and variable bindings to the query processor. In this case, we
have supplied a default query context. You can then iterate the results thus:

for value in results:
print value.asString()

Alternatively, XmlResults objects have next(), previous(), and peek() methods to more effi-
ciently browse query results one value at a time.

■Tip XQuery allows for the notion of a default container, allowing a collection() without argument. This is set
using the XmlQueryContext.setDefaultCollection function and is the most recently opened container when
using the dbxml shell.

■Tip The addAlias API method (or corresponding shell command) can be used to create aliases for your collec-
tions. This is useful when you have unwieldy paths to a collection and want to simplify your query expressions.

Documents
A single BDB XML document consists of a name, the content, and any metadata attributes that you
associate with the document. Document names are the unique identifier for a record within a con-
tainer and are indexed by default for all new containers.

BDB XML works with documents using the XmlDocument class. Under the hood, BDB XML uses
the Xerces DOM to store and manipulate documents. This makes it possible to integrate with Xerces
if you have need for a DOM interface to your documents.

CHAPTER 5 ■ ENVIRONMENTS, CONTAINERS, AND DOCUMENTS 53

6668ch05.qxd 7/14/06 2:18 PM Page 53

■Tip Many BDB XML applications do not necessarily regard the database as the authoritative location for the
documents it contains. This is largely a matter of preference and architecture, but because the documents in the
database have often been imported or created separately from the database, the documents are retained else-
where and possibly accessed there by the applications. In such implementations, the database serves the primary
function of indexing and querying—indeed, the purpose of a database. Keeping an external collection of XML
documents has other benefits, including the ability to rebuild the database at will (although proper logging should
make this an uncommon operation), the ability to allow regular changes to the document collection but batch write
operations to the database, and so on.

Adding Documents
As was already demonstrated, documents can be added to containers using the
XmlContainer.putDocument() method. When a document object is supplied as argument (as
opposed to an XML string), the document creation looks like this:

document = manager.createDocument()
document.setName('doc13')
document.setContent("<document id='13'>test</document>")
container.putDocument(document, manager.createUpdateContext())

The document objects themselves also provide the means to be attached to data streams (using
setContentAsXmlInputStream()) or to use a Xerces DOM object (with setContentAsDOM()). For exam-
ple, to set a document’s content using a file (and using an input stream, rather than just loading the
file’s contents manually):

inputFile = manager.createLocalFileInputStream("files/doc12.xml")
document.setContentAsXmlInputStream(input)

The API also provides streaming from memory, standard input, and URLs. The Java API provides
an additional input stream to feed data from the application directly. Refer to the language-specific
chapters for more information.

Retrieving a Document
As has been demonstrated, the XmlResults object returned from XmlManager.query() can iterate
results supplied as XmlDocuments:

container = manager.openContainer("synsets.dbxml")
results = manager.query("collection('synsets.dbxml')/Synset/Word",
manager.createQueryContext())
for value in results:

document = value.asDocument()
print document.getName()
print document.getContent()

You can also retrieve documents directly using their document name:

container = manager.openContainer("synsets.dbxml")
document = container.getDocument("doc12")
print document.getContent()

CHAPTER 5 ■ ENVIRONMENTS, CONTAINERS, AND DOCUMENTS54

6668ch05.qxd 7/14/06 2:18 PM Page 54

Database queries can access an individual document directly using the doc() query (as opposed
to collection()), as with the following:

doc("synsets.dbxml/doc12")/Synset/Word

Or query for a document within a container by its name:

collection('synsets.dbxml')/*[dbxml:metadata('dbxml:name')='doc12']

Moreover, queries can be performed on individual documents or sets of documents returned
from previous queries using the XmlValue and XmlResults classes. XmlValue encapsulates a primitive
node’s value (roughly equivalent to a node superclass in DOM implementations) and provides
DOM-like methods for navigating a node’s attributes and children. Queries are covered fully in
Chapter 7, “XQuery with BDB XML,” and working with documents after queries and with XmlValue
is covered in later chapters.

Replacing Documents
Replacing a document within a container is simply a matter of setting its content with the
setContent() method and then updating it in the container with the updateDocument() method:

container = manager.openContainer("synsets.dbxml")
document = container.getDocument("doc12")
document.setContent("<document id='12'>test again</document>")
container.updateDocument(document, manager.createUpdateContext())

Of course, the document’s content can be set in other ways, as was already demonstrated with
adding documents. Note that there is no performance advantage to using updateDocument() to
replace a document as with this example; you might as well remove it and add a new document.
Therefore, updateDocument will most often be used when parts of a document—content or meta-
data—are being updated and the rest retained.

Modifying Documents Programmatically
BDB XML provides its own class, XmlModify, for basic document manipulation. This is convenient
when you want to modify documents in a container “in place” or reuse a series of modification
steps across many documents, but not replace an entire document in the database. This operation
uses several parameters, including an XmlQueryExpression (an object to store an XQuery string iden-
tifying the portion of the document to be modified), an object type identifier (to indicate the type
of information being inserted; node, text, and so on), a name, and content. Then, depending on the
XmlModify method called, a different change is affected to the document.

For example, the following will add a node to the previously replaced document:

container = manager.openContainer("synsets.dbxml")
modify = manager.createModify()
queryContext = manager.createQueryContext()
updateContext = manager.createUpdateContext()

query = manager.prepare("/document", queryContext)
name = "newchild"
content = "new content"
modify.addAppendStep(query, XmlModify::Element, name, content)
document = container.getDocument("doc12")
docValue = XmlValue(document)
modify.execute(docValue, queryContext, updateContext)

CHAPTER 5 ■ ENVIRONMENTS, CONTAINERS, AND DOCUMENTS 55

6668ch05.qxd 7/14/06 2:18 PM Page 55

Note that multiple steps (including appending, removing, and renaming) could be added to
the modify object. The execute() method can take an XmlResults object as argument, enabling you
to pass an entire document result set. In this case, the modification steps would be performed
against every document resulting from a given query.

Deleting Documents
Deleting a document from a container is straightforward using the XmlContainer deleteDocument()
method, which takes either the document object or document name as argument:

container = manager.openContainer("synsets.dbxml")
updateContext = manager.createUpdateContext()
document = container.getDocument("doc12")
container.deleteDocument(document, updateContext)

The document name can also be used:

container.deleteDocument("doc12", updateContext)

Transactions
Note that most of the functions being demonstrated (and all of those that change containers) also
accept an XmlTransaction object. They are always taken as the first argument to the method.
Deleting a document within a transaction is as follows:

container = manager.openContainer("synsets.dbxml")
updateContext = manager.createUpdateContext()
transaction = manager.createTransaction()
container.deleteDocument(transaction, document, updateContext)
transaction.commit()

Of course, transactions are possible only on a container that has transactions enabled, as
described in the “Creating and Opening Containers” section.

■Note When a container is opened transactionally, all modifications are transacted by BDB XML, even if you
don't supply a transaction object.

Validation
If a container has the DBXML_ALLOW_VALIDATION flag set (see the section on creating containers),
BDB XML will validate documents that contain a DTD or schema reference when documents are
placed in a container. Simply place the declaration or association in the XML document, enable
the validation container flag, and use the XmlContainer.putDocument() method with the document
file or string.

Note that BDB XML does not continually enforce DTD or schema constraints on a document.
That is, documents can be modified using XmlModify in such a way as to violate an associated DTD
or schema without an error being reported.

CHAPTER 5 ■ ENVIRONMENTS, CONTAINERS, AND DOCUMENTS56

6668ch05.qxd 7/14/06 2:18 PM Page 56

Metadata
BDB XML enables arbitrary metadata to be associated with all documents in a container. The file-
names themselves are a kind of metadata, created automatically when documents are inserted.
Metadata is typically any information about a document that is not contained within that document.
Metadata can be advantageously used with XML documents, because some data—particularly data
that changes often, such as timestamps and authors—is cumbersome to update within an XML doc-
ument, and often is better stored elsewhere. Chapter 4 demonstrated the use of metadata within the
dbxml shell.

To add metadata to a document record, you use the XmlDocument.setMetaData() method. It
takes as arguments a URI (optional to define a namespace for the field), an attribute name, and
an attribute value (as an XmlValue) object. Because this is performed on document objects, it must
be done before a document is placed in a container, or the document must be updated (if it was
retrieved from the container) after metadata has been set.

This API example sets metadata for an existing document:

document = container.getDocument("doc12")
value = XmlValue("doc12")
document.setMetaData("http://www.brians.org/2005/", "author", value)
container.updateDocument(document, manager.createUpdateContext())

Metadata can then be indexed and queried as with data in XML documents and demonstrated
in later chapters.

Note that XmlValue objects can be of many data types—including strings, dates, and decimals—
all based on the XQuery specification. Creating a metadata field as, for example, a date can be useful
when indexing and querying those fields, allowing queries to recognize ordering of dates. This exam-
ple shows how to create an XmlValue with a data type of DATE_TIME, which XQuery recognizes and can
compare in queries:

document = container.getDocument("doc12")
value = XmlValue(XmlValue.DATE_TIME, "2006-01-02T21:24:25")
document.setMetaData("http://www.brians.org/2005/ ", "timestamp", value)

Note that the URL can be arbitrary, but is recommended. When issuing queries for metadata,
the query context must map the namespace for the query to work:

queryContext = manager.createQueryContext()
queryContext.setNamespace("brians", "http://www.brians.org/2005/ ")
query = manager.prepare("/*dbxml:metadata('brians:timestamp')", queryContext)

Metadata is a powerful and efficient way to keep track of information about documents with-
out storing that information within the documents. Indexing, querying, and working with metadata
in the various language APIs are covered in later chapters.

Conclusion
Although later chapters detail the BDB XML API, much of this chapter dealt with the classes and
objects used because they map generally to the physical pieces of the database. Figure 5-1 shows
the relationship of the database components discussed.

CHAPTER 5 ■ ENVIRONMENTS, CONTAINERS, AND DOCUMENTS 57

6668ch05.qxd 7/14/06 2:18 PM Page 57

Figure 5-1. Environments, containers, and documents

Keep in mind the following key points:

• Environments are the outermost piece of a Berkeley database, XML or otherwise (as with
non-XML Berkeley DB databases). They are both analogous to and implemented as file
directories; in Figure 5-1, environment1/ is a file directory. Although mostly optional, envi-
ronments are helpful for configuring aspects of the database, and are critical to logging and
recovery of data. Environments have their API expression in the DbEnv class, and do not con-
tain functionality or options specific to BDB XML.

• Containers are the databases themselves. They exist as files on the file system that are
directly opened, read, and manipulated by BDB XML’s libraries. In Figure 5-1, the two listed
containers container1.dbxml and container2.dbxml are actual files within the directory
environment1/. Containers are managed via the API using the XmlContainer class and are
created, opened, and otherwise manipulated with the XmlManager class. Containers are
included in a database query, rather than executing queries on the container or container
objects themselves. Thus, an XQuery to access container1.dbxml in Figure 5-1 would begin
with collection("container1.dbxml")/ after the environment and container had been
opened. Finally, a default collection can be set and subsequently excluded from the
collection() function.

• Documents are well-formed XML documents stored in containers; each can have arbitrary
metadata associated with it. Documents can be created programmatically, expressed as a
string, or loaded from a file or network stream, prior to placing them in a container. Each of
the containers in Figure 5-1 contains two documents, doc1 and doc2, which are XML docu-
ments. Documents can be manipulated with regard to their container using the XmlContainer
class. Documents have their API implementation in the XmlDocument class—in which name,
content, and metadata can be gotten and set—before being written to a container using
XmlContainer.putDocument or XmlContainer.updateDocument.

CHAPTER 5 ■ ENVIRONMENTS, CONTAINERS, AND DOCUMENTS58

6668ch05.qxd 7/14/06 2:18 PM Page 58

• XmlManager is the primary class for working with BDB XML databases and is used to create
(as a factory object) from scratch the most common objects for containers, documents,
transactions, results, and update and query contexts. It is used to prepare and execute
queries on open containers, providing context for those queries. It encapsulates a Berkeley
DB environment and the open containers in that environment.

• Many API operations—including retrieving query results and changing documents in the
database—entail the use of “helper” BDB XML classes, including XmlResults and XmlModify.
They do not have a physical correspondence to any part of a BDB XML database.

With an understanding of the basic complements of BDB XML, we next explore more exciting
parts of the database: indexes and the queries that use them.

CHAPTER 5 ■ ENVIRONMENTS, CONTAINERS, AND DOCUMENTS 59

6668ch05.qxd 7/14/06 2:18 PM Page 59

6668ch05.qxd 7/14/06 2:18 PM Page 60

Indexes

Indexes are a big reason why you use a database in the first place: to find data quickly. BDB XML
uses XQuery as its query engine, making it one of the most flexible searches you will ever use. Data-
base performance is only as good as the query expression and the indexes it uses. Of course, indexes
are not necessary for queries to happen, but are required for a query to not have to process every
document in the database to determine a match.

This chapter examines the options for indexing your XML and strategies for doing so. There is
no “ideal index strategy” for all collections of XML documents, or even for a single collection of XML
documents. The indexes you should create depend both on the data and the queries you plan to
use, as well as the frequency with which they will be used. Understanding how BDB XML indexes
your data will prepare you to build a database and maintain its high performance. After an explana-
tion of indexes and methods for their creation, this chapter will cover an indexing strategy for the
sample XML data presented earlier in the book.

Creating and Manipulating Indexes
Indexes can be created or deleted on a container at any time, enabling you to change your index-
ing strategy at will. However, the time to index a container is proportional to the number and size
of documents it contains because each document must be processed. Take some time to run some
tests using a small container, trying different indexes, before fully populating containers with all
the data you intend to use. If you work with actual XML files that you are importing, it is easy
because you can quickly repopulate the database.

■Note Indexes do not follow external references within XML documents, such as entities or DTDs. Within
indexes, such references are removed from character data, and internal entity references are replaced with text.
This is important when constructing queries because trying to match such elements will fail. Additionally, CDATA
sections are expanded prior to indexing, and where character data is mixed with child data, the character data is
concatenated.

Indexes can be created using the dbxml shell or the APIs. Using the API makes the index cre-
ation more easily duplicated, of course. After an index is created for a container, that index gets
updated each time a document it touches is added, changed, or deleted. This does add overhead
to the insertion and change of documents (more indexes means slower writes), but because the
process is incremental (as opposed to indexing an already-populated container), it is preferable to
not have to change indexes often once a container is populated. When you do perform expensive
updates to a container’s indexes, keep in mind that read access to those containers will be slow,

61

C H A P T E R 6

6668ch06.qxd 7/17/06 6:53 PM Page 61

and write access will be unavailable. For this reason, manipulating indexes is something best per-
formed with offline databases.

■Note In my own deployments I do not need immediate writes to live containers. Instead, my “live” containers
are read-only copies, and any writes are executed on a separate logging environment. Any index changes are per-
formed there before the container is copied to the live location each night, permitting expensive modifications
without container downtime.

Indexes cost disk space, of course. The increase varies greatly depending on the size of a con-
tainer and the number of documents a given index will “touch.”

Indexes are specified on element nodes, attribute nodes, or document metadata. There are dif-
ferent ways of going about this, but you need to decide which parts of your documents you want
indexed. Each index has an index type, which determines how the nodes will be indexed, whether
they should be unique, the data type they are expected to contain, and the types of operations for
which they will be used.

BDB XML also supports default indexes, which enable an index to exist for all nodes of a con-
tainer’s documents that are not otherwise indexed.

Index Nodes
To create an index, BDB XML needs to be told what part of a document to index. This is done using
the name of whatever data is being used—an element, an attribute, or metadata. An edge where
two nodes meet can also be used (as explained in the following section). Either way, the value of
each named node or edge of nodes (or metadata) is stored in the resulting index, making the
retrieval of the value efficient. Of course, in previous examples we instead retrieved the entire
document from the database.

Index Types
Many options are available when creating BDB XML indexes. They are both read and specified with
a string of index options. A single index description consists of four and sometimes five pieces of
information: uniqueness, a path type, a node type, a key type, and a syntax type. Specified as a
string, the options are delimited with a hyphen.

[uniqueness]-{path type}-{node type}-{key type}-{syntax type}

Here’s an example:

unique-node-metadata-equality-string

This is supplied to the addIndex command in the dbxml shell, or to the XmlContainer.addIndex()
method. We’ll look at doing this differently using the XmlIndexSpecification class a bit later. First,
let’s look at the different index options.

■Note The order of options in an index string is actually unimportant. The examples in this book stick to the
format described for clarity.

CHAPTER 6 ■ INDEXES62

6668ch06.qxd 7/17/06 6:53 PM Page 62

Uniqueness
Uniqueness is an optional setting that causes an index to expect unique values for the indexed
nodes. If duplicate values are encountered during index creation, an error will be thrown. Also,
when a document is changed or inserted that contains a duplicate value for an indexed node, the
change will fail. No uniqueness is enforced within indexes (or, of course, documents) by default.

Path Types
When BDB XML indexes documents, either at index creation time or document insertion/change
time, it parses the document and looks for a node that matches the supplied node to index. Two types
of paths are supported to specify this index node. The first is simply the node/attribute/metadata
name, which is called the node path type. The second, the edge path type, recognizes the intersection
of two nodes, making it more specific.

Recall that more than one <Word/> element could exist with our sample XML data because a
single record represents synonyms:

<Synset fileVersion="1.0" pos="n">
<Id>2323</Id>
<WnOffset version="2.1" pos="n">00466621</WnOffset>
<LexFileNum>04</LexFileNum>
<SsType>n</SsType>
<Word lexId="0">baseball</Word>
<Word lexId="0">baseball game</Word>
<Gloss>a ball game played with a bat and ball between two teams of nine players...

</Gloss>
<SearchKeys>
<Word>ballgame</Word>

</SearchKeys>
</Synset>

By specifying a node index for Word, this file would have three entries in the resulting index: one for
baseball, one for baseball game, and yet another for the <Word/> element with parent <SearchKeys/>,
"ballgame". This is the case with an index of either type node or edge; the difference between these
types concerns the work needed by the query optimizer to find the intended node. A node index only
knows that each of these nodes is called Word and does not keep track of its context. Given a query for
/Synset/Word, BDB XML would look up each Word node and then have to examine the parent node of
each to satisfy /Synset. If our document had only one Word node, this wouldn’t be an issue. But given
the fact that we have three, an edge index would help the processing speed for this query. An edge
index stores the parent of the target node as part of the index entry. If our /Synset/Word query had
the benefit of an edge index on Word, the one index lookup would be enough to tell the query proces-
sor which node we are looking for, without having to examine all three.

Path types enable you to tell BDB XML which type of node indexing you prefer. What you prefer
depends on the XML being used and the queries you intend to write. The node path type is preferable
when you expect no disparate elements of the same name scattered throughout your document. In
the previous example, the node path type needed to look up three index entries for that to happen.
Where you don’t anticipate this overlap, node path types are preferable.

The edge path type enables you to contain more information within the index. It is preferable
when you have nodes of the same name in multiple contexts and want the query to benefit from
knowing the parent of your indexed node.

CHAPTER 6 ■ INDEXES 63

6668ch06.qxd 7/17/06 6:53 PM Page 63

■Tip If you have the ability to compose the XML yourself, it’s a good idea to consider the naming of elements
and attributes given the previous information. Documents that have less overlap in naming enable more flexible
indexing. If you don’t have that ability for a given collection of XML documents, edge types can help when you do
encounter such overlap.

Node Types
The next index option, the node type, has three possible values: element, attribute, or metadata. As
it happens, this specifies the kind of node to be indexed. Elements and attributes correspond here
to their XML definitions.

<Synset fileVersion="1.0" pos="n">
<Id>2323</Id>
<WnOffset version="2.1" pos="n">00466621</WnOffset>
<Word lexId="0">baseball</Word>
<Word lexId="0">baseball game</Word>
...

</Synset>

In our examples, Word is an element, and fileVersion is an attribute. Note that BDB XML does
not index other DOM node types, such as comments. CDATA blocks are treated as text within the
enclosing element (just as with their output in an XML transformation) and are indexed the same
as any other element text.

The third node type, metadata, allows indexing of custom document attributes. When creating
indexes for metadata, you will supply the URI and name for the metadata field (demonstrated
later). Because there are no edges involved with them, only the node path type is recognized for use
with metadata.

Key Types
An index’s key type optimizes the index for a certain type of query test. Different pieces of an XQuery
expression can require different information about a given node. Does it exist? Does it have a given
value? Does it contain a certain string? The equality, presence, and substring key types enable the
index to be tuned for such specific tests.

When queries test a node for equality with a known value—whether string, numeric, or
otherwise—the index should have the key type equality.

When queries test a node for existence in a document, the presence key type is best. Note that
the nodes within an XPath or XQuery statement that specify the parents of a target are not equality
tests that need indexes. That is, given the following query, the only index that is needed is for node
Hypernym with a presence key type:

collection("synsets.dbxml")/Synset/Pointers/Hypernym

Indexes are not needed for the query to determine Synset or Pointers nodes, and they will not
aid in response time.

■Tip The equality indexes also function as presence indexes. When your queries need both for a given node,
an equality index is sufficient.

CHAPTER 6 ■ INDEXES64

6668ch06.qxd 7/17/06 6:53 PM Page 64

The substring key type benefits queries that match the contents of a value, such as when using
the XQuery contains() function. The substring indexes require more disk space than other types
and can be relatively expensive. Note, too, that substring indexes are not used with queries that do
not use named nodes, such as those that use a current node (.) without context or with wildcards,
for example.

The equality, presence, or substring string is supplied as the third (if uniqueness is not used)
or fourth (if uniqueness is used) option in the index string.

Syntax Types
The last option for creation of an index is its syntax type, which is a data type that indicates to BDB
XML the content and format of values to expect from the indexed nodes. Consider that different
comparisons and function operations yield different results (and have different implementations)
depending on the data type of the query or arguments; a date will be compared to another date
with date-specific conversions, a decimal added to a decimal yields a decimal, and so on. Of course,
if the key type is presence (as opposed to equality or substring), there is no data type because the
values are not stored at all.

A complete list of syntax types is shown in Table 6-1.

Table 6-1. BDB XML Index Syntax Types

None gDay

anyURI gMonth

base64Binary gYear

boolean gYearMonth

date hexBinary

dateTime NOTATION

dayTimeDuration QName

decimal string

double time

duration yearMonthDuration

float untypedAtomic

Each syntax type is equivalent to an enumerated type within the XmlValue class. The syntax
type chosen will, of course, depend on the type of values stored in the indexed nodes.

Managing Indexes
Indexes can be added to or deleted from a container at any time. Again, keep in mind that index
changes on large containers can be expensive.

Adding Indexes
Once you have decided on an index type, you can add it via the dbxml shell by using the described
index option descriptions or programmatically via the API using either the string descriptions or
enumerated types. Within the shell, the addIndex command takes an optional namespace URI (if
the node being indexed has a namespace), the node name, and the index description string.

CHAPTER 6 ■ INDEXES 65

6668ch06.qxd 7/17/06 6:53 PM Page 65

If we want to index the sample synset XML’s <Word/> element (which contains all words for that
synonym set), we could do it via the shell, like this:

dbxml> addIndex "" Word node-element-equality-string

Adding index type: node-element-equality-string to node: {}:Word

Note that the namespace is blank because our XML is not using namespaces, and our index
option string is node-element-equality-string. Word is the name of the element to be indexed. node
indicates that we want node path indexing, rather than edges (because the element will only occur in
one place within our XML); element that Word is an element (as opposed to attribute or metadata);
equality that we anticipate this index to be used for equality queries for Word; string because
<Word/> will always contains string data.

The same index could be added programmatically using the same index option string using
the API.

from bsddb3.db import *
from dbxml import *
mgr = XmlManager()
uc = mgr.createUpdateContext()
container = mgr.createContainer("test.dbxml")
container.addIndex("", "Word", "node-element-equality-string", uc)

In this case, the arguments to the addIndex() method are the same as the shell, with the addi-
tion of the XmlUpdateContext object. Note that multiple indexes can be created at once within the
API by providing multiple index option strings, space delimited:

container.addIndex("", "Word", "node-element-equality-string node-element-presence-none", uc)

■Note If you’re wondering how the BDB XML API handles exceptions with method calls like those being demon-
strated, please refer to the API chapters because each language interface does this differently.

The XmlIndexSpecification class provides an object view of all indexes on a container, for
times when making many index changes at once might be preferable to manipulating indexes one
at a time.

An XmlIndexSpecification object is returned from the XmlContainer.getIndexSpecification
method:

indexspec = container.getIndexSpecification()

The resulting handle can then be used to specify a series of index changes before updating
the specification back to the container. For example, to add two indexes to the container, includ-
ing the already-applied Word index, use the following:

container = manager.openContainer("synsets.dbxml")
uc = manager.createUpdateContext()
indexspec = container.getIndexSpecification()
indexspec.addIndex("", "Word", "node-element-equality-string")
indexspec.addIndex("", "Id", "node-element-equality-string")
container.setIndexSpecification(indexspec, uc)

CHAPTER 6 ■ INDEXES66

6668ch06.qxd 7/17/06 6:53 PM Page 66

The XmlIndexSpecification class also supplies methods for deleting and replacing existing
indexes so a specification can be used to make mass updates to a container. Of course, given the
knowledge that creation of a single index on a populated container can be expensive, keep in
mind that the same operation performed several times will be more so. However, containers are
reindexed only once with a call to setIndexSpecification(), regardless of the number of indexes
being changed.

Listing Indexes
Listing a container’s existing indexes is a simple matter using the shell’s listIndex command, as
demonstrated in Chapter 5, “Environments, Containers, and Documents.”

dbxml> listIndexes

Index: node-element-equality-string for node {}:Word
Index: unique-node-metadata-equality-string for node
{http://www.sleepycat.com/2002/dbxml}:name
2 indexes found.

In this case, the Word node index exists, along with the default document name index. Listing
indexes programmatically uses the XmlIndexSpecification class to iterate the indexes.

indexspec = container.getIndexSpecification()
for index in container.getIndexSpecification():

print "%s (%s): %s" % (index.get_name(), index.get_uri(), index.get_index())

This outputs the following:

Word (): node-element-equality-string
name (http://www.sleepycat.com/2002/dbxml): unique-node-metadata-equality-string

Again, different language APIs supply this listing in slightly different ways.

Deleting and Replacing Indexes
Indexes are deleted from containers by using the delIndex command in the shell, by using the
XmlContainer.deleteIndex() method, or by manipulating an XmlIndexSpecification object. Each
needs a URI, a name, and an index specification. They are needed to identify an index uniquely
because multiple indexes can exist for a single node.

From the shell:

dbxml> delIndex "" Word node-element-equality-string

Deleting index type: node-element-equality-string from node: {}:Word

With an XmlContainer object using the index option string:

container = manager.openContainer("synsets.dbxml")
uc = manager.createUpdateContext()
container.deleteIndex("", "Word", "node-element-equality-string", uc)

CHAPTER 6 ■ INDEXES 67

6668ch06.qxd 7/17/06 6:53 PM Page 67

And finally, using the XmlIndexSpecification, deleting two indexes at once:

container = manager.openContainer("synsets.dbxml")
uc = manager.createUpdateContext()
indexspec = container.getIndexSpecification()
indexspec.deleteIndex("", "Word", "node-element-equality-string")
indexspec.deleteIndex("", "Id", "node-element-equality-string")
container.setIndexSpecification(indexspec, uc)

Note that the same XmlIndexSpecification object can be used to add, delete, and also replace
indexes. This example uses the replaceIndex() method to change the Word node to a substring index:

indexspec = container.getIndexSpecification()
indexspec.replaceIndex("", "Word", "node-element-substring-string")
container.setIndexSpecification(indexspec, uc)

As with adding and deleting indexes, the XmlContainer class offers a replaceIndex() method
for convenience. (All index manipulation convenience methods use the getIndexSpecification()
and setIndexSpecification() “under the covers.”)

Default Indexes
BDB XML provides for a special index strategy to be supplied for all nodes within a container that
are not otherwise indexed. Default indexes can be created for a single node type, element, attribute,
and metadata. They can enhance performance for unplanned queries or queries that touch unin-
dexed nodes.

Default indexes for a container are created and deleted by using either the dbxml shell or via the
API using the XmlIndexSpecification class or the XmlContainer convenience methods. The addIndex
and delIndex shell commands operate on the default indexes when no URI or node name is supplied:

dbxml> addIndex node-element-equality-string

Adding default index type: node-element-equality-string

From the API, the XmlContainer.addDefaultIndex() and XmlContainer.deleteDefaultIndex()
methods can be used, as well as the XmlIndexSpecification's addDefaultIndex() and
deleteDefaultIndex() methods. Here, too, many operations could be performed with an
XmlIndexSpecification object, completely replacing both default and individual node indexes
for a container.

Index Strategies
An index strategy is the index type combined with the syntax type, as indicated by the index option
strings. Although Chapter 7, “XQuery with BDB XML,” will make clear how indexes will benefit cer-
tain types of queries, it’s worth looking at a complete example set of index strategies. In this example,
we will build an index specification using the Python API.

Recall the sample XML data used to populate the synsets.dbxml container. A single (abbrevi-
ated) document reads as follows:

<Synset fileVersion="1.0" pos="n">
<Id>2323</Id>
<WnOffset version="2.1" pos="n">00466621</WnOffset>
<LexFileNum>04</LexFileNum>
<SsType>n</SsType>

CHAPTER 6 ■ INDEXES68

6668ch06.qxd 7/17/06 6:53 PM Page 68

<Word lexId="0">baseball</Word>
<Word lexId="0">baseball game</Word>
<Pointers>
<Hypernym>2322</Hypernym>
<DomainMember type="category">2322</DomainMember>
<Hyponym>2324</Hyponym>
<Hyponym>2325</Hyponym>
<Hyponym>3655</Hyponym>
<DomainMember type="category">91752</DomainMember>

</Pointers>
<Gloss>a ball game played with a bat and ball between two teams of nine players

...</Gloss>
</Synset>

Each document has an Id, Words, a Gloss entry defining it, and a Pointers section containing
various children that in turn refer to other documents’ Id value, as well as other miscellaneous
information. You already saw indexes created for the Word and Id elements. Because we’ll need to
look up the record for a given word, and because no <Word/> element exists elsewhere in our docu-
ments, we create the Word as an element node equality index with string syntax. If we anticipated
having to do partial text matches on Words, we could create a substring index for Word as well. We
don’t anticipate presence tests for Word elements, because every one of our documents contains at
least one. For now, the one index will do. Our specification starts as follows:

from bsddb3.db import *
from dbxml import *

environment = DBEnv()
environment.open("myenv2", DB_CREATE|DB_INIT_LOCK|DB_INIT_LOG|DB_INIT_MPOOL|DB_INIT_TXN,
0)
manager = XmlManager(environment, 0)
container = manager.openContainer("synsets.dbxml")
indexspec = container.getIndexSpecification()
uc = manager.createUpdateContext()

indexspec = container.getIndexSpecification()
indexspec.addIndex("", "Word", "node-element-equality-string")

Next, we’ll add an index for the Id elements. Because the pointers in every document use this
ID to reference one another, they will be queried in many contexts, as demonstrated in Chapter 7.
They occur in only one place in our document, so we don’t need edge indexes. When creating the
XML files, we incremented the assigned IDs for each record and need subsequent IDs to be unique.
Additionally, we anticipate only equality lookups, not presence or substring. We don’t require
numeric operations on these IDs, so we use a syntax of string.

indexspec.addIndex("", "Id", "unique-node-element-equality-string")

For Gloss, we do anticipate substring lookups to find keywords within the definition texts. The
most common of them are queries that use the XPath contains() function:

collection("synsets.dbxml")/Synset[contains(Gloss, "baseball")]/Id

Although these Gloss queries might be infrequent, performing such a search without an index
would be enormously expensive. We add a substring index to Gloss nodes:

indexspec.addIndex("", "Gloss", "node-element-substring-string")

Lookups on the various children of the Pointer element are frequent because in this example
they indicate relation data including what “kind of thing” baseball is, what records are “kinds of

CHAPTER 6 ■ INDEXES 69

6668ch06.qxd 7/17/06 6:53 PM Page 69

baseball”, and so on. For example, knowing that the Id for the “sport, athletics” record is “2582”, we
could query for the kinds of sports:

collection("synsets.dbxml")/Synset[Pointers/Hypernym="2582"]

(We could instead just list the hyponyms listed in the document named “2582”, but as you’ll see
later, we don’t necessarily retain the bidirectional pointers for our records, making this a safer query.)

We need an equality index for each pointer type. Here, too, these element names occur in only
one location:

indexspec.addIndex("", "Hypernym", "node-element-equality-string")
indexspec.addIndex("", "Hyponym", "node-element-equality-string")
indexspec.addIndex("", "DomainMember", "node-element-equality-string")

In the case of the DomainMember element, an attribute type indicates additional required data. For
this and for the pos (“part-of-speech”) attribute of the Synset element, we add attribute indexes. In
this case, the WnOffset element also has a pos attribute, and although the type attribute does not
occur elsewhere, it’s a common enough attribute name to warrant an edge index:

indexspec.addIndex("", "type", "edge-attribute-equality-string")
indexspec.addIndex("", "pos", "edge-attribute-equality-string")

Finally, we create a default index for all nonindexed data to allow unplanned queries and apply
the strategies to our container:

indexspec.addDefaultIndex("node-element-equality-string")
container.setIndexSpecification(indexspec, uc)

■Note For the curious, this particular container with no indexes is about 127 MB in size (sizes aren’t necessarily
consistent across deployments). The listed indexes, minus the Gloss substring index, add approximately 92 MB to
the container size. The Gloss substring index alone adds another 85 MB for a container totaling 304 MB.

At this point, if we ran the listIndexes command with the container opened in the dbxml shell,
we’d see this:

dbxml> listIndexes
Default Index: node-element-equality-string
Index: node-element-equality-string for node {}:DomainMember
Index: edge-attribute-equality-string for node {}:DomainMember/@type
Index: node-element-substring-string for node {}:Gloss
Index: node-element-equality-string for node {}:Hypernym
Index: node-element-equality-string for node {}:Hyponym
Index: unique-node-element-equality-string for node {}:Id
Index: edge-attribute-equality-string for node {}:Synset/@pos
Index: node-element-equality-string for node {}:Word
Index: unique-node-metadata-equality-string for node
{http://www.sleepycat.com/2002/dbxml}:name
10 indexes found.

Query Plans
BDB XML provides a convenient tool to determine the effectiveness of index strategies. Each time an
XQuery is processed via the shell as well as the API XmlManager.prepare() and XmlManager.query(), a
plan is constructed for the tests that any available indexes will satisfy. (In the case of prepare(), the

CHAPTER 6 ■ INDEXES70

6668ch06.qxd 7/17/06 6:53 PM Page 70

query plan is generated once and can be reused; with query(), the query plan is discarded after the
query is performed.) BDB XML allows this plan to be output as an XML document itself, enabling
you to determine whether your queries are using the available indexes as intended and then modify
strategies accordingly.

■Caution The syntax of a query plan as output by the dbxml shell is subject to change and not completely
documented anywhere other than in the BDB XML source code.

Query plans are examined using the dbxml shell’s queryPlan command. It has the same syntax
and argument as the query command, but does not execute the supplied query. It instead outputs
the aforementioned XML description of the query plan BDB XML will use to satisfy the search. Con-
tinuing with the example from the previous section, imagine that I wanted to execute the following
query to find any Synset records with Word element values of the word "hand":

collection("synsets.dbxml")/Synset[Word = "hand"]

Instead of using the query command, I’ll use queryPlan via the shell to output the query
processor’s plan:

dbxml> queryPlan '
collection("synsets.dbxml")/Synset[Word = "hand"]
'

This outputs the following:

<XQuery>
<Navigation>
<QueryPlanFunction result="collection" container="synsets.dbxml">
<OQPlan>n(V(node-element-equality-string,Word,=,'hand'),P(node-element-equality-

string,prefix,Synset))</OQPlan>
</QueryPlanFunction>
<Step axis="child" name="Synset" nodeType="element"/>
<DbXmlFilter>
<Navigation>
<Step axis="child" name="Word" nodeType="element"/>
<DbXmlCompare name="equal">
<Sequence>
<AnyAtomicTypeConstructor value="hand"

typeuri="http://www.w3.org/2001/XMLSchema" typename="string"/>
</Sequence>

</DbXmlCompare>
</Navigation>

</DbXmlFilter>
</Navigation>

</XQuery>

The full plan XML contains a complete breakdown of the XQuery expression, further described
in Chapter 7. Of note here is the <OQPlan/> element, which identifies the index, if any, that is used
to satisfy the given part of the query expression. (The element name stands for Optimized Query
Plan.) The whole string is included in the parenthesized string n(...), which indicates an intersec-
tion, and then two intersecting sets V(...) and P(...), each with indexes. The V indicates a value
lookup; the P indicates a presence lookup. Here we can see that the Word index is being used for this
value looking in our query expression, as we would expect.

CHAPTER 6 ■ INDEXES 71

6668ch06.qxd 7/17/06 6:53 PM Page 71

Now suppose we changed our query to be for an Id element, and wrote it thus:

collection("synsets.dbxml")/Synset[Id = 2323]

Executing this query as shown will be very slow given the current indexes. Its query plan shows
this OQPlan element:

<OQPlan>n(P(node-element-equality-string,prefix,Synset),P(unique-node-element-equality-
string,prefix,Id))</OQPlan>

In this case, the query could not use the Id index to satisfy the query because our query’s equals
(=) comparison was numeric, but the Id index is of syntax string. (This is a basic example of how
casting happens “under the hood” of BDB XML.) For this reason, the query plan shows two presence
lookups, but no index being used for a value lookup. Our query has to process every document in the
previous set and compare the supplied value with each. The proper query would have been this:

collection("synsets.dbxml")/Synset[Id = "2323"]

It yields a query plan OQPlan of this:

<OQPlan>n(V(node-element-equality-string,Id,=,'2323'),P(node-element-equality-
string,prefix,Synset))</OQPlan>

Here we can see that the Id index is being used in a V set for a value lookup. Our query will also
be very fast, a good indicator that the indexes are satisfying the query in the way we intend.

Examining query plans can be useful for understanding how BDB XML translates a query
into index lookups and helps to make your index selection and query construction more effective.
Chapter 7 will examine XQuery and include more details on examining and optimizing indexing
strategies.

Conclusion
I demonstrated a rudimentary and entirely inflexible XML indexing solution in Chapter 2, “The
Power of an Embedded XML Database.” In this chapter, you saw a robust and comprehensive
indexer for XML. It’s important to keep in mind that XML is the reason why such a powerful indexing
solution is possible: being already-organized data, the database can concern itself purely with index-
ing and querying instead of the minutiae of rows and columns, and data organization enforced by
the database itself. Being XML, the same query language works for both documents and collections
of documents. The BDB XML index options make for flexibility in how you query collections to allow
for optimal performance.

In Chapter 7, we’ll exploit these indexes to build powerful queries that involve multiple data-
bases, identify relationships between many documents, and even output results to look any way we
want them to.

CHAPTER 6 ■ INDEXES72

6668ch06.qxd 7/17/06 6:53 PM Page 72

XQuery with BDB XML

XQuery is a unique query language, providing all the XML referencing power of XPath with a
complete miniature scripting language. It allows modular coding and importing, mathematical
operations, function definitions, results post-processing, and even reshaping and outputting of new
XML. Applied to BDB XML, a single XQuery expression can query many containers (or documents)
simultaneously, performing set operations on multiple data sources. With the BDB XML indexes
powering the query processor, XQuery makes possible some impressive searches with huge collec-
tions of XML data.

Simply put, XQuery 1.0 is to XML what SQL is to relational database (RDB) tables: it is used to
get information out of XML-formatted data. The language represents something of a coming of age
for XML, with support in all major database engines (IBM, Oracle, Microsoft) and a mature W3C
recommendation on its way to becoming a standard. XQuery is built on existing XML technologies,
including XPath and XML Schema, making it immediately familiar to most XML users, with addi-
tional features making it sophisticated enough for complex query processing.

Appendix A, “XML Essentials,” looks at XPath 1.0 and explains the fundamentals of paths, pred-
icates, and functions. XPath 2.0 and XQuery share these basics and are supersets of the functionality
thus far described. This chapter will explain XQuery basics, presuming XML and XPath knowledge
on the part of the reader. XQuery is a topic on which entire books could be (and have been) written,
and its details are out of the scope of this one. Nonetheless, this chapter will provide a thorough
look at its core functionality. More information is available from the resources listed at the end of
the chapter, and Appendix C, “XQuery Reference,” contains a reference for the language’s operators
and functions.

Trying XQuery
All good development software enables quick experimentation, as with the BDB XML dbxml shell
utility. The tool provides an -s option that allows a file containing a script to be provided as argu-
ment. This script needs to provide the same commands and syntax as the shell in interactive mode,
meaning a query will take this form:

query 'expression'

The print command is then necessary to see the query’s result.
The XQuery distribution used by and included with BDB XML 2.2.x also provides a command-

line tool—eval—found in the directory xquery-1.x/examples/eval/ of the distribution. This tool
permits execution of XQuery queries stored in files on disk, making it an excellent way to debug
and experiment with XQuery. It takes an XQuery file as argument, along with a number of optional
parameters. BDB XML 2.3 will see the XQuery implementation moved to a new project, XQilla, in

73

C H A P T E R 7

6668ch07.qxd 7/14/06 4:10 PM Page 73

which this tool is called xqilla. Many of the command-line options are the same; the options for
both are shown in Table 7-1, with options added by xqilla identified with an asterisk (*).

Table 7-1. Options for the eval/xqilla XQuery Utility

Option Description

-q Quiet mode, suppresses output

-n Runs the query a provided number of times

-i Loads the provided XML file and binds it as the context item for the query

-b Sets the base Uniform Resource Identifier (URI) for the context

-o Writes the result to the specified file

-d Enables remote debugging on the specified host:port

-p Parses in XPath 2 mode, as opposed to the default XQuery*

-P Parses in XPath 1.0 compatibility mode, as opposed to the default XQuery*

-t Outputs an XML representation of the syntax tree*

All the XQuery examples in this section can be loaded as shown into an XQuery file or executed
using the dbxml shell (provided as a query argument). Of course, where collection() is used within
queries to refer to a BDB XML container, only the dbxml shell will yield the expected results.

Two Integrated Device Electronics (IDEs) are worth mentioning in the context of BDB XML and
XQuery. First, Stylus Studio is a visual editor for XML, XSL, XQuery, and XML Schema that includes
integration for several databases, including BDB XML. This allows a BDB XML collection to be
queried using XQuery written and debugged within the editor.

Another offering, <oXygen/>, provides a similar editor environment with support for XML diffs
and merges, schemas, XSLT 1.0 and 2.0, and so on. It permits execution against BDB XML contain-
ers, environment configuration from within the IDE, as well as monitoring of debugging messages
to view query plans.

Depending on your preference, there are many options to learning and using XQuery with BDB
XML. After queries (and your XQuery knowledge) are refined, you’ll likely either copy them into
your own BDB XML application or save them as XQuery files that your application (or another
query) can then load and process.

Sample Data
Throughout this chapter, the XQuery examples shown apply to a file or a collection of files similar to
the <person/> data used in Appendix A, and the Wordnet data used in Chapter 2, “The Power of an
Embedded XML Database,” Chapter 4, “Getting Started,” and Chapter 6, “Indexes.” An example of
our person data for a container people.dbxml is shown in Listing 7-1.

Listing 7-1. Sample XML Data for the Container people.dbxml

<person id="6641">
<name>

<last>Brown</last>
<first>Jim</first>
<middle>Austin</middle>
<nick>Big</nick>

</name>

CHAPTER 7 ■ XQUERY WITH BDB XML74

6668ch07.qxd 7/14/06 4:10 PM Page 74

<age>24</age>
<phone>

<office>612-555-0091</office>
<home/>

</phone>
<street> Attn: Jim Brown

Pleax Systems, Inc.
18520 25th Ave

</street>
<city>Minneapolis</city>
<state>MN</state>
<sex>male</sex>
<hobby>boats</hobby>
<hobby>carpentry</hobby>

</person>

Listing 7-2 contains an example of the Wordnet synset data; they are basically dictionary entries
with numeric pointers to other entries for relationships such as “ this is a kind of X” and “Y is a part
of this”. Further knowledge on this format is not necessary for understanding the examples in this
chapter.

Listing 7-2. Sample XML Data for the synsets.dbxml Container

<Synset fileVersion="1.0" pos="n">
<Id>14861</Id>
<WnOffset version="2.1" pos="n">02772480</WnOffset>
<LexFileNum>06</LexFileNum>
<SsType>n</SsType>
<Word lexId="0">baseball</Word>
<Pointers>

<Hypernym>14746</Hypernym>
<Hypernym>14866</Hypernym>

</Pointers>
<Gloss>a ball used in playing baseball</Gloss>

</Synset>

We’ll be basing the example queries in this chapter on these two samples, so feel free to refer to
them often.

XPath
The first thing to know about XQuery is that virtually all XPath 1.0 expressions are valid XQuery
expressions, depending slightly on the implementation. The same path syntax and usage (step
selections, predicates, operators, functions) are available within XQuery.

Thus, the following XPath expression will execute without trouble, assuming that the processor
knows what the context node is. (Context nodes here are what the query processor sees as the “cur-
rent” node within the document, making queries relative to that node.)

/person[@id="6641"]/name/first

Other programs have different ways to bind the context node. Within the dbxml shell, you can
make the query “absolute” by using the doc() function:

doc('file:./person.xml')/person[@id='6641']/name/first

CHAPTER 7 ■ XQUERY WITH BDB XML 75

6668ch07.qxd 7/14/06 4:10 PM Page 75

■Tip You can also use the contextQuery command within the dbxml shell to set the context to a query’s results.

Within XQuery, the same path selection syntax is used when addressing particular nodes and
constructing predicates for their selection. The major difference between XPath 1.0 and 2.0 is the
addition of new functions, including doc() and collection(), a complete set of data types based
on XML Schema, sequence expressions, and some of the functional clauses explained later. As an
example, the following XPath 2.0 expression evaluated against our <person/> XML will output each
child element of <name/> using the for and return clauses:

for $name in (doc("file:./person.xml")/person[@id="6641"]/name/*)
return $name

This is equivalent to the following, which is more straightforward:

doc("file:./person.xml")/person[@id="6641"]/name/*

The use of the for clause to iterate the results of the path selection makes it easy to expand the
query to include conditionals, additional iteration, and more advanced functionality, as you’ll see.

Expressions
Every piece of an XQuery expression evaluates to a value, including the path expressions just
discussed. Thus, the following is valid XQuery:

2+2

4

To see this, type q '2+2' right into the dbxml shell, followed by print. Individual function calls
are legal as well.

upper-case("test string")

TEST STRING

Nearly all expressions can be nested in XQuery, as with this predicate:

doc("file:./person.xml")/person[@id="6641"]/name/*[2+2]

This makes for simplified debugging and testing of larger examples because they can often be
broken down and evaluated in smaller parts. There are many types of expressions in XQuery, from
this simple arithmetic to complex sequence comparisons and logic computations.

■Note As with other XML technologies such as XPath and XSLT, XQuery is a “zero-side-effect” language, although
this may change with a future version. At the present time, XQuery does not provide a means of changing XML or
otherwise updating its data sources unless user-created functions are called within XQuery to accomplish the same.
XQuery is a declarative language.

CHAPTER 7 ■ XQUERY WITH BDB XML76

6668ch07.qxd 7/14/06 4:10 PM Page 76

Knowing the value of a given expression is helpful for understanding how it affects its context
within XQuery because expressions as simple as comparisons can yield different results depending
on the values and their data types. BDB XML does not use XML Schema type information associated
with given XML within queries; nonetheless, types defined for data and casted values within queries
can yield varying results when used in comparisons and other processing. For example, an XQuery
comparison such as equality (eq) will yield a true result when equal values of the same data type are
compared or when equal untyped values are compared, and will yield false with the same condi-
tions when the values are not equal. An error results when two values of incompatible types are
compared, however. A section later in this chapter discusses data types at more length, but note that
evaluating small expressions within the dbxml shell will quickly give you an idea of what you can
expect to result from such expressions.

Expressions in XQuery can and usually do span multiple lines, as we’ve seen. They might them-
selves contain XML. This expression evaluates to true:

string(<test>Hello</test>) eq "Hello"

Seeing XML inside XQuery is a bit “trippy” for newcomers used to the compact syntax of XPath.
As you can imagine, it plays a bit part in allowing XQuery to reshape results by itself returning XML,
as seen in Listing 7-3.

Listing 7-3. Reshaping Results

for $name in (doc("file:./person.xml")/person[@id="6641"]/name/*)
return <name>{$name/string()}</name>

<name>Brown</name>
<name>Jim</name>
<name>Austin</name>
<name>Big</name>

Of course, this is BDB XML, and working within a single XML document is a constraint we don’t
have. So to accomplish something similar, we’ll use collection() in our expression in Listing 7-4.

Listing 7-4. Querying Document Collections

for $name in (collection("people.dbxml")/person[@id="6641"]/name/*)
return <name>{$name/string()}</name>

We’ll delve deeper into XQuery’s main clauses later.

Sequences
Those familiar with XPath 1.0 will take note of the variable assignment in the previous section as
storing a node set. In XQuery, what was a node set is now a sequence, which is much more powerful.
Sequences within XQuery are constructed with parentheses:

(1, 2, "B", <test/>)

Formally speaking, a sequence is an ordered sequence of one or more items, where items are
usually (but not necessarily) values. A sequence can contain values of any data type including nodes,
and expressions and functions may accept and return sequences themselves. Sequences are never

CHAPTER 7 ■ XQUERY WITH BDB XML 77

6668ch07.qxd 7/14/06 4:10 PM Page 77

nested; a sequence within a sequence is seen by XQuery as a flattened list. This permits otherwise
cumbersome operations to be made quite simple; for example, a general comparison of sequences:

(1, 4, 8) < (1, 4, 7)

This general less-than (<) comparison determines whether any values in the left sequence are
less than any value in the right sequence, evaluating to true in this case.

In truth, every XQuery expression evaluates to a sequence, even though that sequence often
contains a single item. Sequences are especially useful when it comes time to perform set opera-
tions. You’ll see some examples later in this chapter.

A Complete Example
Listing 7-5 contains a complete XQuery example that demonstrates many of the language’s core
features, which I will dissect it into its component parts.

Listing 7-5. A Complete XQuery Example

declare namespace people = "urn:something";
declare variable $name as xs:string external;
declare function people:age-ok($age) {

if (21 < $age and $age < 100)
then true()
else false()

};
(: Here is a comment. :)
<people>

{
for $person in collection("people.dbxml")/person
where people:age-ok($person/age/number()) and $person/name/*/string() = $name
order by $person/name/last
return
<person>

<name>{$person/name/*}</name>
<age>{$person/age/string()}</age>

</person>
}

</people>

This example queries for every <person/> in our people.dbxml container with an age value
between 21 and 100 that has at least one name equal to the value of $name, has an external variable
supplied by the processor (set in the dbxml shell using the setVariable command), and returns the
results as an XML document with document node <people/>. Of course, such a query could be writ-
ten many ways, but here we want to look at the various parts of such an example. The result of this
query follows:

<people>
<person>

<name>
<last>Brown</last>
<first>Jim</first>
<middle>Austin</middle>
<nick>Big</nick>

CHAPTER 7 ■ XQUERY WITH BDB XML78

6668ch07.qxd 7/14/06 4:10 PM Page 78

</name>
<age>24</age>

</person>
</people>

Everything prior to the comment (surrounded by a parenthesis and colon) in this example is the
XQuery prolog. The prolog is optional, and is used to declare global and external variables, declare
namespaces, import external modules, and declare modules. The rest of the example comprises the
query body, which is evaluated to produce the query result.

The expressions within the body will ring some bells for SQL users, given the presence of the
where clause, establishing query criteria for what functions like an SQL SELECT statement. Of course,
the entire path selection on people.dbxml could have been written using a predicate expression:

...
for $person in collection("people.dbxml")/person[people:age-ok(age/number() and name/* eq

$name]
...

Breaking it up as in Listing 7-5 makes the expression more readable and maintainable because
additional logic could be added to—for example—make parts of our query criteria conditional.
Suppose that we expected $name to be given a value by our application prior to evaluating the query,
but want to accommodate cases in which no such parameter exists. Because XQuery expressions
might be nested, even a where clause can be made conditional. As you’d expect, the where expres-
sion evaluates to true and false for the criteria it precedes. This makes putting an if conditional
after where a simple matter:

...
for $person in collection("people.dbxml")/person

where if (empty($name)) then true() else $person/name/*/string() = $name
...

Of course, we want this query to select records that both match $name and meet the age range
requirement:

...
for $person in collection("people.dbxml")/person

where if (empty($name)) then true() else $person/name/*/string() = $name
and people:age-ok($person/age/number())

...

And that’s not even doing sorting! We’ll get to that shortly. Don’t worry if this real world example
is confusing; we’ll back up momentarily and break things apart a bit more in the following sections.
But first let’s consider a more complex query example—this time using the <Synset/> files stored in
synsets.dbxml. Recall that each record has a word or words, and also a short definition for the record
stored in <Gloss/>. Imagine that we wanted to get the <Id/> of every record that has a pointer of any
kind to any other record named “baseball”; perhaps we’re hoping that the result set will be a good
smattering of all things baseball. (SQL programmers will recognize this as a join operation.) We’d
need the <Id/> of each baseball record first and then use it in the predicate of the pointer query. We
do this in Listing 7-6 using a straight path expression.

Listing 7-6. Performing a “Join” with a Pure Path Expression

collection("synsets.dbxml")/Synset[Pointers/Hypernym =
collection("synsets.dbxml")/Synset[Word="baseball"]/Id/string()]/Id

CHAPTER 7 ■ XQUERY WITH BDB XML 79

6668ch07.qxd 7/14/06 4:10 PM Page 79

But that will only take us so far, particularly when we start performing set operations on these
results. Listing 7-7 shows the more intelligible XQuery version.

Listing 7-7. A “Join” with XQuery

for $baseball in collection("synsets.dbxml")/Synset[Word="baseball"]/Id,
$synset in collection("synsets.dbxml")/Synset

where $synset/Pointers/Hypernym = $baseball/Id
return $synset/Id

There are other ways this query could be written, but not all will take adequate advantage of
BDB XML’s indexes. In Listing 7-7, the query processor is required to retrieve all matches to both path
expressions in our for clause before performing the comparisons. We’d be better off—depending on
our indexing strategy—to store our “baseball IDs” in a sequence using XQuery’s let clause before
using it in a where clause to perform our select, as evidenced in Listing 7-8.

Listing 7-8. Storing and Reusing a Sequence

let $baseballs := collection("synsets.dbxml")/Synset[Word="baseball"]/Id
for $synset in collection("synsets.dbxml")/Synset

where $synset/Pointers/Hypernym = $baseballs
return $synset/Id

Later in this chapter we’ll discuss tips for building queries to use indexing strategies and
for building queries to best use indexing strategies. We’ll now look more closely at these clauses
themselves.

FLWOR Expressions
FLWOR (pronounced “flower”) stands for the five main clauses in XQuery: for, let, where, order by,
and return. These clauses make many expressions simpler, but their main purpose is to construct
sequences that require processing beyond path expressions, such as joins, as well as to reorder items.

A FLWOR expression consists of one or more for clauses, one or more let clauses (for and let
may occur in any order), optional where and order by clauses (in that order), and a return clause.
Each of them is described in the following subsections.

for
The for clause brings in to scope one or more variables. In this way it is not unlike let, but acts iter-
atively, with the variable value changing for each item in a sequence. In this way it is analogous to
the start of a code “block” in traditional programming languages and the keyword for is appropriate
for this reason. Its syntax follows this pattern:

for $var in expression at $position, $var2 in expression2, ...

We already demonstrated the introduction of multiple variables in previous examples; the
keyword at is used to add a position variable. This variable is then updated with each iteration,
storing the respective variable’s value location in the sequence. Variables brought into scope by for
remain in scope the life of the query’s evaluation; they only pass out of scope with the query itself,
at which point, well, there really isn’t any scope.

CHAPTER 7 ■ XQUERY WITH BDB XML80

6668ch07.qxd 7/14/06 4:10 PM Page 80

You can have many for clauses in a query, which is useful when a lot of iteration is needed to
perform joins.

let
The let clause functions like for to introduce variables into scope, assigning to them values, but
does so without iteration. The common use is to store values that are used repeatedly, such as the
“baseball IDs” expression shown earlier. XQuery variables cannot be updated repeatedly within a
single scope. The syntax is the following:

let $var := expression, $var2 := expression2, ...

Keep in mind that XQuery variables can store any XQuery data type, making them useful for
storing results from expression, as well as user-supplied sequences with items of any data types.
Variables introduced by let are available to all other expressions within the query; there is no “block
scope” as with traditional programming languages.

■Tip XQuery is smart about the identity of nodes. When an item in a sequence is a node, variables retain the
absolute identity of that node. In other words, two variables both assigned a node of the same name and string
value will not equate upon comparison because they are not the same node. Two variables each assigned
the exact same node (in the same external document, at the same document location, and so on) equate as
expected: true.

where
The where clause supplies a condition expression for the query. This expression is like any other in
XQuery, except that rather than evaluating to a sequence, it is converted to a boolean value capable
of use as a conditional. This makes possible conditional conditionals, in which where may be follow-
ing with an if clause. Again, as a language with nested expressions, it’s easy to try individual parts of
larger expressions in the dbxml shell to be certain of their result value.

The syntax for where is simply this:

where condition

Multiple conditions may be supplied by simply stringing multiple expressions together with
and, and placing them after where. The functions true() and false() can be used where a condition
expression needs to explicitly name the boolean. The where clause is nearly identical in function to a
path predicate, acting as a filter for results.

order by
It wouldn’t be a good query language without a versatile means of reordering results. The order by
clause takes the query results (after being filtered with the where clause) and applies sorting using a
supplied value and order. The syntax for order by is as follows:

order by key modifier, key2 modifier2, ...

The sort key is a variable or expression to be used for the sorting, and the modifier specifies a
sort direction, ascending or descending. Several other modifiers are available (but not described here)

CHAPTER 7 ■ XQUERY WITH BDB XML 81

6668ch07.qxd 7/14/06 4:10 PM Page 81

to determine string sort orders and where empty values should occur in the sort. The keys with their
modifiers are used in the order listed, of course.

return
This last clause of FLWOR builds the actual result returned from a query, after results are filtered
and sorted. Keep in mind that return occurs only as the final clause in a query; as with the other
FLWOR clauses, it is not allowed within expressions or even functions. The syntax is simply this:

return expression

You already saw examples of return that included XML to reshape results. Here again, remem-
ber that expressions themselves might contain XML, and the one provided to return is no different.
The return expression can contain its own path selection, function calls, and comparisons.

■Tip XQuery processors maintain what is commonly referred to as a tuple space while processing expressions.
This is essentially a matrix containing values and sequences each time a variable is introduced with for and
let, filtered with the where clause, and sorted with order by. Understanding the tuple space is not critical to
using XQuery, but it does provide insight into how XQuery processors compute sequence operations through the
life of a query expression using FLWOR. Refer to the XQuery specification or other online XQuery resources for
more information.

Data Types
We’ve talked a little about XQuery’s data types being derived from XML Schema. We’ll fill this out
a bit more in this section, but please refer to XQuery and XML Schema documentation for a full
explanation of types in XQuery. You can skip this discussion and still use XQuery with BDB XML to
near full capacity, and then return to it when you begin having trouble with your data types.

■Note XML documents you add to BDB XML containers that have associated XML Schemas are validated only
when the document is inserted into a container—and only then if validation is explicitly enabled. BDB XML does
not retain this information and does not enforce the types thereafter. Within your XQuerys, you can make the
schema’s type declarations available using the import schema expression from a query’s prolog.

Data types in XQuery belong to a type hierarchy. This inheritance tree determines in large
part how operations see different values and what the results from operations will be. Every
value in XQuery is a sequence of zero or more items, and item is the primitive XQuery data type
(because sequence is not a data type). Because all values are a sequence, a single item is equiva-
lent to a sequence containing that one item (singleton). The rest of XQuery’s data types derive
from item, but item is not a creatable data type (abstract). Figure 7-1 contains a tree of the com-
mon XQuery data types in their relationship to item. Note that all types are either types of nodes
or atomic types because all descend from either node or xdt:anyAtomicType, which are also
abstract.

CHAPTER 7 ■ XQUERY WITH BDB XML82

6668ch07.qxd 7/14/06 4:10 PM Page 82

Figure 7-1. Abbreviated XQuery data type tree

XQuery data types can be cast into other data types using the function of the same name as
the type. Thus, a document value can be cast as a string using string() and so on. Within a path
expression (and when called with no arguments), these functions match the data type they repre-
sent (as with text() at the end of a path expression), or convert the path’s value to the given data
type (as string() at the end of a path expression). When necessary, the XQuery keyword castable
as can be used to test an expression for “castability,” given an expression before and a type after:

"person" castable as xs:integer

false

CHAPTER 7 ■ XQUERY WITH BDB XML 83

6668ch07.qxd 7/14/06 4:10 PM Page 83

And the keyword cast as used to perform an explicit cast, also given an expression before and a
type after:

person cast as xs:string

person

This, of course, has the same effect as the following:

string(person)

Nodes
Values of type node represent an XML node and have properties that include node-name, attributes,
parent, and children. Because of this type inheritance, you can test any value to see if it’s derived
from node with the node() function. Nodes in the XQuery data model retain their identity in that
they know from which document and at which location they exist, and are ordered according to
those locations.

Nodes are selected from existing XML documents or by constructing them within a query. All
nodes belong to a tree, each tree with exactly one root node. A tree might be a complete document
(in which case the root node is of node kind document) or a fragment (in which case the root node is
not a document).

Nodes operate not unlike nodes in the DOM model, in which a node’s children are elements,
comments, and text; its parent a document or element node (unless it’s the root node).

Atomic Values
Values of types that descend from xdt:anyAtomicType are so called because, unlike nodes, they have
no structure or inherent relationship to other values. Values of these types are the customary data
types in traditional programming languages: strings, numbers, booleans, and so on. In all, XQuery
has 50 different atomic types; most are specialized and see only occasional usage.

Worth noting is the xdt:untypedAtomic type, for values with no data type, including those from
untyped XML. Values pulled from XML documents—unless a node or cast as a string —are likely to
be untyped. (This is especially true with BDB XML, in which everything that isn’t cast or indexed as
a specific value is untypedAtomic.) This type behaves like string with few exceptions, resulting in
behavior you probably expect (especially if you’re coming from XPath 1.0) without problems.

Boolean values are expressed with the true() and false() functions, as has been demonstrated.

Navigation
Appendix A describes XPath 1.0 path expressions at length; they remain compatible in XQuery, and
I won’t expound much on what is there. In XQuery, as with XPath 1.0, a path consists of steps similar
to a file directory expression. Each step depends on the previous step for its context, and defines an
axis or direction. The @ is a shortcut for the attribute axis, .. for parent, . for self, and empty for
the most-common child axis.

The only substantial differences with path expressions in XQuery (aside from the XQuery
expressions allowed in predicates []) are as follows:

CHAPTER 7 ■ XQUERY WITH BDB XML84

6668ch07.qxd 7/14/06 4:10 PM Page 84

• Unlike XPath 1.0, namespaces and variables in XQuery are often defined within the query, as
opposed to outside of it.

• XQuery expressions can declare user functions and call them inside path expressions.

• XQuery provides many navigation functions, including collection() and doc(), which occur
regularly in path expressions.

• XQuery adds several ways to establish context for a path; for example XPath 1.0 had position()
and last(), XQuery adds current-date() and base-uri() to the list.

See Appendix C for a list of navigation functions and context functions in XQuery.

■Tip Because XQuery allows grouping of expressions using parentheses, predicates can be applied to larger
queries to apply predicates to a nested expression:

(collection("synsets.dbxml")/Synset[Word="baseball"])[1]

Comparisons
XQuery has a wide range of operators and functions, many providing similar functionality for

different data types. For example, XQuery provides XPath 1.0’s comparison operators (<, >, =, and so
on), but calls them general comparison operators. The earlier section on sequences showed how
these operators behave with multi-item sequences, in which any item in the sequences on each
side of the operator can satisfy the test. This can have the unexpected result of the following expres-
sion evaluating to true:

(2, 5) = (2, 3)

Because the left sequence has an item (2) equal to an item in the right sequence (2), the expres-
sion is true.

As with XQuery’s many data types, several other comparisons are necessary to achieve the
desired result. Value comparisons use the letter notations (lt, gt, eq, and so on) to perform straight
value tests, as with the following that evaluates to false:

5 lt 3

These comparisons work for strings and other types as you’d expect, but do not work for
sequences of more than one item (nonsingleton sequences).

■Note String comparisons in XQuery are implementation-specific and use an XQuery “collation” that can be
modified. This is typically the Unicode code point collation, as is the case with BDB XML.

Several other comparisons are available in XQuery, including the is operator to compare
nodes. This example evaluates to true:

let $team := doc("file:./person.xml")
return $team is doc("file:./person.xml")

Recall the discussion about nodes retaining their identity? The following expression is false:

<person/> is <person/>

CHAPTER 7 ■ XQUERY WITH BDB XML 85

6668ch07.qxd 7/14/06 4:10 PM Page 85

This is because XQuery constructs the node on each side of the operator, making them differ-
ent nodes by definition. The is comparison operator returns true only when the same node, in the
same file, at the same location, is being compared to itself. For this reason, it can be useful for locat-
ing a point at which two sequences “intersect,” as demonstrated in Listing 7-9.

Listing 7-9. Navigating to a Node via Two Expressions

for $person in collection("people.dbxml")//person[name/first = "Jim"]
for $known in collection("people.dbxml")//person[name/last = "Brown"]
where $person is $known
return $person

■Tip Although not an operator, XQuery’s deep-equal() function allows for the comparison of entire sequences
as well as XML trees.

User Functions
User-defined functions are declared in a query’s prolog or imported as part of a separate module.
They use the following syntax:

declare function funcname (parameters) { expression };

Functions can also be defined to cast the function’s result and to declare a function as “exter-
nal” and supplied by the implementation. The parameter definition contains both typed and
untyped variables that are made available to the scope of the function. They are typed using the as
keyword, and the list is separated with a comma. Functions can include a namespace (BDB XML
requires one). They cannot override built-in functions, and they cannot declare optional parame-
ters or accept a variable number of parameters (overloaded). A simple example of a user-defined
function is given in Listing 7-10.

Listing 7-10. A Simple User-Defined Function

declare namespace my = "http://brians.org/temperature";
declare function my:celsius-to-fahrenheit ($celsius as xs:decimal) as xs:decimal {

($celsius + 32) * (9 div 5)
};
my:celsius-to-fahrenheit(15)

84.6

User-defined functions can be anything allowed in a standard query body (including
FLWOR expressions) as long as the declarations are proper. The evaluated value of a function
given parameters is the result value for a function call, making it a convenient way to organize,
test, and debug code.

CHAPTER 7 ■ XQUERY WITH BDB XML86

6668ch07.qxd 7/14/06 4:10 PM Page 86

Modules
User-defined functions would be more useful if they could be imported as modules, as is the case.
In truth, the query expressions we have examined thus far comprise a main module as the XQuery
engine sees things; additional modules that are loaded are library modules. They get loaded via the
import module expression; most imports follow this form:

import module namespace at location;

The module itself has a module declaration of the following form:

module namespace namespace = uri;

As an example, if I had saved the example from the previous section into a file
temperature.xqm, I would have the code contained in Listing 7-11.

Listing 7-11. A Simple Library Module

module namespace temp = "http://brians.org/temperature";
declare function temp:celsius-to-fahrenheit ($celsius as xs:decimal) {

($celsius + 32) * (9 div 5)
};

I could import it into the main module and call it as shown in Listing 7-12.

Listing 7-12. Importing a Library Module and Calling One of Its Functions

import module namespace temp = "http://brians.org/temperature" at "temperature.xqm";
temp:celsius-to-fahrenheit(10)

75.6

Some XQuery Tricks
The word tricks implies techniques that are obscure, which these are not. However, for a newcomer
to XQuery (especially one familiar with SQL, XPath, or XSLT), the ease and power of many operations
with XQuery is refreshing. No, it isn’t always the case that an XQuery implementation is simpler than
its SQL counterpart, but this is XML we’re working with. The following are some useful examples for
getting results with XQuery.

Iteration vs. Filtering
XQuery makes easy many queries that are not possible with path expressions, even though the
operation seems a simple one. Consider the case in which we want to select from our people.dbxml
record all persons with phone numbers in the 612 area code. We’re tempted to use this query:

collection("people.dbxml")/person[starts-with(phone, "612")]

However, this query will fail unless the path expression before our predicate yields only one
result, which it clearly does not. This is because the starts-with() function (as well as contains()
and matches())accepts only singleton arguments, not sequences of more than one item. Note that

CHAPTER 7 ■ XQUERY WITH BDB XML 87

6668ch07.qxd 7/14/06 4:10 PM Page 87

this is true of many operators and functions in XQuery. In such a case, FLWOR provides the solution
(see Listing 7-13).

Listing 7-13. Supplying a where Clause to Filter Results

for $person in collection("people.dbxml")/person
where starts-with($person/phone, "612")
return $person

Not so fast. Of course, starts-with() again gets a first argument of a multi-item sequence
because our people.dbxml records tend to have multiple phone numbers. One more iteration could
do the trick, as evidenced in Listing 7-14.

Listing 7-14. Two Iterations

for $person in collection("people.dbxml")/person
for $phone in $person/phone
where starts-with($phone, "612")
return $person

We have thus created a “join” operation. Of course, this type of iteration is not always desirable
because this returns the <person/> document each time it finds a match, which in this case is twice
when both phone numbers start with “612”.

The key to this query lays in the XQuery every and some condition keywords, which both begin
a quantifier expression that evaluates to true. They are often placed after the FLWOR where clause to
qualify filtered results beyond a single expression. The some quantifier takes this form:

some $variable in expression1 satisfies expression2

The variable (or variables) in the statement functions as introduced for the scope of both
expressions, the first providing its value or iteration values (as with for ... in); the second expression
determining whether the expression will evaluate to true or false. The some operator causes the
conditional to be true of any iterations of the variable that satisfy the condition expression; every
evaluates to true only if all iterations satisfy the expression. Listing 7-15 gives us the proper query.

Listing 7-15. Using a some ... in ... satisfies Conditional

for $person in collection("people.dbxml")/person
where some $phone in $person/phone satisfies (starts-with($phone, "612"))
return $person

Regular Expressions
In the previous section, the starts-with() function was used to match an area code in a string.
Although this function is retained in XQuery for compatibility with XPath 1.0, XQuery’s matches()
function is the desired replacement and offers the power of regular expression matching to the lan-
guage. The equivalent example using matches() retains the variable as the first argument, with the
second the “612” string matched to the start of the string with the ^ anchor, as seen in Listing 7-16.

■Note BDB XML does not currently optimize matches(), meaning you should only use it on small queries that
do not need the benefit of indexes. The contains() function is optimized to use substring indexes, however.

CHAPTER 7 ■ XQUERY WITH BDB XML88

6668ch07.qxd 7/14/06 4:10 PM Page 88

Listing 7-16. Using Regular Expressions to Match an Area Code

for $person in collection("people.dbxml")/person
where some $phone in $person/phone satisfies (matches($phone, "^612"))
return $person

Of course, more-sophisticated queries using regular expressions could also include a determi-
nation of whether a phone number actually has an area code (versus “612” being the prefix of a
seven-digit number):

matches("612-3321", "^612-\\d{3}-\\d{4}$")

false

Regular expression can permit several different delineating characters besides the hyphen.

matches("612.423.1124", "^612[-\\.]\d{3}[-\\.]\\d{4}$")

true

■Tip For many queries to run in the dbxml shell, characters need escaping for the query processor to see them.
This includes the backslashes in the pattern matching quotes, which need to be written as double backslashes
(\\) because of the layers of interpolation before the expression is interpreted.

And variables can be inserted into a query; remember that the variable’s content is here used as
part of the regular expression. An example is given in Listing 7-17.

Listing 7-17. Using a Dynamic Regular Expression to Match an Area Code and Phone Number

let $areacode := "612"
let $match := concat("^", $areacode, "[-\\.]\\d{3}[-\\.]\\d{4}$")
return matches("612.423.1124", $match)

true

Querying for Metadata
BDB XML exposes document metadata attributes via the dbxml:metadata() function, making it easy
to include metadata queries in your expressions. This function takes the metadata attribute name
as argument, allowing comparisons as shown in Listing 7-18, retrieving by document name.

Listing 7-18. Query Using a Document’s Name as BDB XML Metadata

for $document in collection("people.dbxml")/*
where $document[dbxml:metadata("dbxml:name") = "person1"]
return $document

CHAPTER 7 ■ XQUERY WITH BDB XML 89

6668ch07.qxd 7/14/06 4:10 PM Page 89

Because BDB XML enables metadata attributes of any supported type, these comparisons can
include anything from dateTime timestamps to price decimal data, allowing some complex range
time and price queries, respectively.

Querying Multiple Data Sources
Comparing RDBs to XML data sources can be difficult, especially when dealing with BDB XML
containers or multiple containers. Operations such as joins can happen within a single XML file, in
which we could compare certain elements, groups of elements, and even XML fragments to RDB
tables. But BDB XML containers are not properly analogous to tables; if a parallel is to be drawn, it
would be to an RDB in its entirety. Thus, the equivalent of querying and processing data from multi-
ple containers and documents could be performing set operations across many RDBs at once.
Luckily, we won’t be doing that.

Querying multiple containers or documents in a single XQuery expression is as simple as plac-
ing the input functions in our path expressions wherever we want them. Listing 7-19 shows an
example of this.

Listing 7-19. Querying Multiple Data Sources as a Join

for $x in collection("people.dbxml")/person/name/first
for $y in collection("synsets.dbxml")/Synset/Word
where contains($y, $x)
return (string($x), "=>", string($y))

XQuery has a unary (|) or set union operator for computing the union between sets. Among
its uses within expressions is to allow the same path expression to be tested against different
containers.

(collection("people.dbxml") | collection("synsets.dbxml"))/person[name/first = "Jim"]

Because everything in XQuery is an expression, containers as well as stand-alone documents
both on disk and on the network can be involved in queries using both techniques.

Recursion
Recursion is the capability of a function to call itself. With hierarchical data, recursion is a common
means to repeatedly call a method to drill down with each invocation. Those familiar with XSLT are
typically (and sometimes grossly) versed in the art of recursion because XSLT does not allow vari-
ables to be assigned values more than once. This prevents a variable from being used to cumulatively
update a value toward the end of a total. Recursion is equally useful in XQuery because variables are
assigned values only once.

Recall the synset.dbxml container? It holds XML documents representing synsets—similar to
dictionary entries—from the Wordnet database. This data is interesting primarily because each
record contains “pointers” a la foreign keys to other records, effectively telling us what things are
“kinds” of other things. (A “banana” is a “fruit” is a “plant,” and so on.) A recursive function is ideal
for stepping up this kind of hierarchy. We’re going to do this using the “banana” record, in fact,
which is shown in Listing 7-20.

Listing 7-20. The synset XML file for “banana”. Stand.

<Synset fileVersion="1.0" pos="n">
<Id>41886</Id>
<WnOffset version="2.1" pos="n">07647890</WnOffset>

CHAPTER 7 ■ XQUERY WITH BDB XML90

6668ch07.qxd 7/14/06 4:10 PM Page 90

<LexFileNum>13</LexFileNum>
<SsType>n</SsType>
<Word lexId="0">banana</Word>
<Pointers>

<Hypernym>41581</Hypernym>
<Meronym type="component">65855</Meronym>
<Meronym type="component">65852</Meronym>

</Pointers>
<Gloss>elongated crescent-shaped yellow fruit with soft sweet flesh</Gloss>

</Synset>

More of this data can be ignored for our purposes; we’ll focus on the /Synset/Pointers/Hypernym
value, which is a “kind of” pointer to the record /Synset[Id = 41581]. That document will in turn
have a <Hypernym/> element, pointing to another document, and so on until the top of this lexi-
con is reached. We want a function that will take the document itself as argument and give us a
nicely printed list of this entry’s “hypernym tree.” We’ll call the function hypernyms (it is defined in
Listing 7-21).

Listing 7-21. Recursively Processing Pointers Between Records

declare namespace my = "http://brians.org/synsets";
declare function my:hypernyms ($synset) {

let $hyp := $synset/Pointers/Hypernym[1]/string()
return

if (empty($hyp))
then ($synset/Word)[1]/string()
else

let $next := my:hypernyms(collection("synsets.dbxml")/Synset[Id = $hyp])
return concat($next, " => ", $synset/Word[1])

};
my:hypernyms((collection("synsets.dbxml")/Synset[Word="banana"])[1])

entity => physical entity => substance => solid => food => produce => edible fruit => banana

Notice the liberal use of the numeric predicates ([1]) throughout this example; they are to avoid
errors during comparisons and functions in which a singleton is required. If we filled this example
out a bit more, we’d iterate the values in those expressions to end up with more interesting output.
But for this example, using only the first value in each sequence sufficed.

This next (academic?) example uses a recursive function to convert a decimal value into a string
representation of its binary equivalent. Listing 7-22 shows an example of this.

Listing 7-22. Converting Decimal to Binary Using a Recursive Function

declare namespace my = "http://brians.org/temperature";
declare function my:binary ($dec as xs:decimal) {

if ($dec eq 0 or $dec eq 1)
then $dec
else

let $m := xs:integer($dec div 2)
let $j := $dec mod 2
let $D := my:binary($m)
return concat(string($D), string($j))

};

CHAPTER 7 ■ XQUERY WITH BDB XML 91

6668ch07.qxd 7/14/06 4:10 PM Page 91

my:binary(46)

101110

Well, you never know.

Reshaping Results
You’ve already seen how XQuery lets you output XML. You can do this with inline XML elements or
you can use XQuery’s constructors to build individual node types in XQuery variables. In Listing 7-23,
we’ll modify the example from Listing 7-21 to use the node constructors element and attribute to
build XML containing the actual hierarchy represented in the record pointers.

Listing 7-23. Building XML to Mirror a Conceptual Hierarchy

declare namespace my = "http://brians.org/synsets";
declare function my:steps ($synset) as element() {

let $hyp := $synset/Pointers/Hypernym[1]/string()
return

if (empty($hyp))
then element step { attribute name {($synset/Word)[1]} }
else

let $next := my:steps(collection("synsets.dbxml")/Synset[Id = $hyp])
return element step {

attribute name { $synset/Word[1] },
$next

}
};
my:steps((collection("synsets.dbxml")/Synset[Word="banana"])[1])

<step name="banana">
<step name="edible fruit">

<step name="produce">
<step name="food">

<step name="solid">
<step name="substance">

<step name="physical entity">
<step name="entity"/>

</step>
</step>

</step>
</step>

</step>
</step>

</step>

We have results, but they aren’t quite the results we’re after. In fact, they’re the inverse of what
we want, where the <step/> element would have an attribute name with value entity as the root ele-
ment of our fragment. We need to turn this XML inside out.

CHAPTER 7 ■ XQUERY WITH BDB XML92

6668ch07.qxd 7/14/06 4:10 PM Page 92

We don’t have too many options for reversing things because we have to crawl “up” the hierar-
chy, and there’s no good way to append to existing nodes. This could be done most easily by having
two recursive functions: one to build our step list as a sequence (similar to what Listing 7-21 gener-
ated), and another that takes that sequence and outputs the XML to represent it. In Listing 7-24,
our hypernyms function will return a sequence of Id strings. Note that we’re reversing our sequence
(using the reverse() function) to build the XML in inverted order and using the remove() function
to remove the first item in the sequence with each function iteration. This time, the XML includes
the IDs in preparation for the example in the next section.

Listing 7-24. Building XML to Reflect a Conceptual Hierarchy: Take Two

declare namespace my = "http://brians.org/synsets";
declare function my:hypernyms ($synset) {

let $hyp := $synset/Pointers/Hypernym[1]/string()
return

if (empty($hyp))
then $synset/Id/string()
else

let $next := my:hypernyms(collection("synsets.dbxml")/Synset[Id = $hyp])
return ($synset/Id/string(), $next)

};
declare function my:tree ($idlist) {

if (empty($idlist))
then ()
else

element step {
attribute id {$idlist[1]},
attribute name {collection("synsets.dbxml")/Synset[Id = $idlist[1]]/Word[1]},
my:tree(remove($idlist, 1))

}
};
let $list := my:hypernyms((collection("synsets.dbxml")/Synset[Word="flan"])[1])
return my:tree(reverse($list))

<step id="1" name="entity">
<step id="2" name="physical entity">

<step id="23" name="substance">
<step id="80020" name="solid">

<step id="40564" name="food">
<step id="41580" name="produce">

<step id="41581" name="edible fruit">
<step id="41886" name="banana"/>

</step>
</step>

</step>
</step>

</step>
</step>

</step>

Now we have an XML hierarchy that reflects the actual hierarchy being represented.

CHAPTER 7 ■ XQUERY WITH BDB XML 93

6668ch07.qxd 7/14/06 4:10 PM Page 93

Utilizing Hierarchy
If you’re like me, there will be cases in which you’ll want to use XQuery not only to pull information
out of existing XML but also to use its computing power for its own sake. Where you can define the
XML yourself—as we did in the previous section—the effect can be not unlike relational key tables,
in which a single table is used only to store keys for mappings between tables and use them to per-
form complex joins.

Some readers, knowing that the synsets.dbxml data I’ve been working with is a flat hierarchy,
will wonder why this hierarchy doesn’t match up to an XML hierarchy. After all, isn’t storing this
information in XML files with hierarchy “pointers” to other files basically equivalent to using an
RDB for the same task? The answer is, absolutely, and we’ve just seen how we could instead reflect a
real conceptual hierarchy in our data hierarchy. A container full of such documents would provide
for useful lookups, effectively functioning as a pure index data source.

The dbxml shell lets you supply a query such as this to the putDocument command, enabling an
entire container to be populated with XQuery-generated documents. Having created a container
steps.dbxml and added equality indexes for id and name attributes, we can issue the putDocument
with the query and the q parameter. BDB XML autogenerates document names with this usage,
which is fine for our purposes. I abbreviated the function definitions from Listing 7-25.

Listing 7-25. Populating a Container with XQuery via the dbxml Shell

dbxml> open steps.dbxml
dbxml> preload synsets.dbxml
dbxml> putDocument "" '
...
for $id in (1 to 1000)
let $strid := $id cast as xs:string
let $list := my:hypernyms(collection("synsets.dbxml")/Synset[Id = $strid])
return my:tree(reverse($list))
' q

Document added, name = dbxml_2, content = <step id="1" name="entity"/>
Document added, name = dbxml_3, content = <step id="1" name="entity"><step id="2"
name="physical entity"/></step>
Document added, name = dbxml_4, content = <step id="1" name="entity"><step id="3"
name="abstract entity"/></step>
...

Granted, this is a fairly large database container with a lot of duplicate information. (In all,
the container holds 117,598 documents—some small; others large.) But the effect is that we can
now query our hierarchy as if it were contained in a single XML file, with our path expressions
matching the conceptual hierarchy itself. Listing 7-26 queries for all presidents (ID value 56161)
in the database.

Listing 7-26. Querying steps.dbxml for Every President of the United States

collection("steps.dbxml")//*[@id = "56161"]//*

<step id="58176" name="Adams"/>
<step id="58177" name="Adams"/>
<step id="58266" name="Arthur"/>
<step id="58509" name="Buchanan"/>

CHAPTER 7 ■ XQUERY WITH BDB XML94

6668ch07.qxd 7/14/06 4:10 PM Page 94

<step id="58539" name="Bush"/>
<step id="58541" name="Bush"/>
<step id="58589" name="Carter"/>
<step id="58677" name="Cleveland"/>
<step id="58680" name="Clinton"/>
...

We would use these IDs to retrieve the full records from synsets.dbxml.

■Note The steps.dbxml examples in this section don’t reflect the fact that records in Wordnet can have multi-
ple hypernyms (“kind of” pointers), or that words can exist in many synsets. Nor are they taking into account the
other pointer types in Wordnet. The examples here are simplified to demonstrate functionality.

It’s easy to imagine the hierarchy being used for a game of “20 Questions”, in which an applica-
tion first executes the query in Listing 7-27 to get a random word. Random number generation in
any functional language is a fairly inelegant ordeal; rather than demonstrate a poor example, our
function will rely on an externally generated random decimal between 0 and 1.

Listing 7-27. A “Random” Record Selector

declare namespace my = "http://brians.org/synsets";
declare variable $rand as xs:decimal external;
declare function my:random-synset () {

let $count := 250000 (: the number of records for our set :)
let $synset := (collection("steps.dbxml")//*[@id="9"]//*)[($count * $rand) cast as

xs:integer]
return ($synset/@id/string(), $synset/@name/string())

};
my:random-synset()

56056
policeman

When the user supplies a guess as a question of the form (“Are you a[n] X?”), the application
parses the word, looks up its ID, and calls the guess() function in Listing 7-28, supplying the answer
and the guess. We could imagine the user asking, “Are you a person?” and “Are you a cook?” (shown
in the code at the end of the listing).

Listing 7-28. A Question Function for “20 Questions”

declare namespace my = "http://brians.org/synsets";
declare function my:guess($answerId as xs:decimal, $guessId as xs:decimal) {

if (collection("steps.dbxml")//*[@id = $guessId]//*[@id = $answerId])
then true()
else false()

};
my:guess(56056, 19), (: policeman, person :)
my:guess(56056, 53188) (: policeman, cook :)

true, false

CHAPTER 7 ■ XQUERY WITH BDB XML 95

6668ch07.qxd 7/14/06 4:10 PM Page 95

The example in Listing 7-29 queries for every record that descends from “food” (ID value 24)
and has a name ending with the letters “an”.

Listing 7-29. Searching for All Foods that End with the Letters “an”

for $step in collection("steps.dbxml")//*[@id = "24"]//*
where matches($step/@name, "an$")
return $step/@name/string()

bran
jelly bean
marzipan
flan
veal parmesan
broad bean
vanilla bean
Parmesan
moo goo gai pan
White Russian
manhattan

And finally a query for any words that describe both a person (ID value “19”) and some kind of
man-made thing (ID value “23”) is shown in Listing 7-30.

Listing 7-30. Searching for All Words that Describe Both People and Things

for $person in collection("steps.dbxml")//*[@id = "19"]//*/@name
for $artifact in collection("steps.dbxml")//*[@id = "23"]//*/@name

where $person = $artifact
return $person/string()

precursor
ace
bishop
conductor
batter
bomber
builder
cookie
cracker
joker
suit
stud
...

Ranges
Range queries are useful for many data types, including timestamps (finding all values within a cer-
tain time span) and decimal values such as prices (finding all products within a certain price range).
XQuery’s regular expressions even allow you to test and match characters in given Unicode ranges.

CHAPTER 7 ■ XQUERY WITH BDB XML96

6668ch07.qxd 7/14/06 4:10 PM Page 96

Zip codes and area codes are often used to compute approximate proximity; for example, the
distance of a store to a customer’s location, with the information typically served by a website. Less
often, exact latitude and longitude (and altitude) are used, but are becoming more common as
geographic data becomes more readily available. Several XML dialects have emerged to express
geographic coordinates and other data, but none are quite as striking as Google Earth’s use of
the KML format. Thousands of these files are available online to establish placemarks within the
Google Earth application, and loading them into a BDB XML container gives us a chance to use
them in searches. A typical (but shortened) placemark file is shown in Listing 7-31.

Listing 7-31. Typical KML Placemark File

<kml xmlns="http://earth.google.com/kml/2.0">
<Placemark id="property_1">

<name>Four Seasons Cairo at Nile Plaza</name>
<description><![CDATA[<p>1089 Corniche El Nile
Cairo, Egypt </p>
<p>Score: 86.09</p>
<p>30-story hotel near Garden City on the east bank of the river. </p>

...
© 2006 Travel + Leisure</p>]]></description>
<Point>

<altitudeMode>relativeToGround</altitudeMode>
<coordinates>31.229338,30.03595,0</coordinates>

</Point>
</Placemark>

</kml>

Notice that the <coordinates/> element combined the latitude, longitude, and altitude in a
single string value, separated by commas. (The KML format does allow for individual longitude and
latitude elements, but not all have them.) This will make the individual values difficult to query
and impossible to index properly. If we were insistent on maintaining the original files, one option
would be to store each individual value as a metadata attribute for the document; unfortunately,
many placemarks can be stored in a single document, so this is not an option. Instead, writing new
documents (to the same or a new container) will let us break these values up; we do this using the
tokenize() function, which splits a string into a sequence of strings, provided a string on which to
split. We have already added decimal equality indexes for both latitude and longitude. An example
follows in Listing 7-32.

Listing 7-32. Populating a Container with Reshaped XML

dbxml> openContainer coord.dbxml
dbxml> preload kml-files.dbxml
dbxml> putDocument '' '
declare namespace google = "http://earth.google.com/kml/2.0";
for $place in collection("kml-files.dbxml")//google:Placemark
let $coord := tokenize($place/google:Point[1]/google:coordinates, ",")
return <place>

<name>{$place/google:name/string()}</name>
<longitude>{$coord[1]}</longitude>
<latitude>{$coord[2]}</latitude>

</place>' q

Range queries are also now fairly straightforward, given some coordinates of our own. Making
the search a function that accepts a longitude value, a latitude value, and a range lets us reuse it.

CHAPTER 7 ■ XQUERY WITH BDB XML 97

6668ch07.qxd 7/14/06 4:10 PM Page 97

Ranges here are in degrees, in which a degree is about 69.2 miles (1/360th of the earth’s circumfer-
ence). Listing 7-33 shows an example of this.

Listing 7-33. Function for Range Queries

declare namespace my = "http://brians.org/range";
declare function my:in-range ($myLon as xs:decimal, $myLat as xs:decimal, $range as

xs:decimal) {
for $place in collection("coord.dbxml")/place

where ($place/latitude > ($myLat - $range) and $place/latitude < ($myLat +
$range))
and ($place/longitude > ($myLon - $range) and $place/longitude < ($myLon +

$range))
return $place/name/text()

};
my:in-range (-111.651862515931, 40.00652821419428, 2)

Stein Eriksen Lodge

Note that our range function returns text nodes instead of strings. This is intentional because
nodes are required for the set operations, retaining their context identity.

■Note If the reader is looking for an interesting XQuery challenge, I suggest writing a function to find the record
with the shortest coordinate distance from a given coordinate, without a provided range.

Unions, Intersections, and Differences
Set operations are easy with XQuery, a fact owed in large part to sequences as the underlying data
list format. All the examples in this section operate only on sequences of node values.

A union—returning all nodes from two sets with duplicates removed—can be computed
simply by using the union operator, which works on node sequences. The example query in
Listing 7-34 demonstrates a union computation. In this case, the union is performed on the
sequences of places “close” to two locations, generating a list of both without duplicates. This
example is using the in-range() function from Listing 7-33.

Listing 7-34. Union Computation On a Sequence of Nodes

declare namespace my = "http://brians.org/range";
declare function my:in-range ($myLon as xs:decimal, $myLat as xs:decimal, $range as

xs:decimal) {
for $place in collection("coord.dbxml")/place

where ($place/latitude > ($myLat - $range) and $place/latitude < ($myLat +
$range))
and ($place/longitude > ($myLon - $range) and $place/longitude < ($myLon +

$range))
return $place/name/text()

};

let $placesCloseToHome := my:in-range (-111.651862515931, 40.00652821419428, 12)
let $placesCloseToJim := my:in-range (-93.49764084020113, 45.01312134030998, 12)

CHAPTER 7 ■ XQUERY WITH BDB XML98

6668ch07.qxd 7/14/06 4:10 PM Page 98

return $placesCloseToHome union $placesCloseToJim

Little Nell
St. Regis Resort, Aspen
Grand Hotel, Minneapolis
...

An intersection—returning all nodes from two sets that exist in both sequences—is similarly
straightforward. This example omits the declarations (as do the rest of the examples in this sec-
tion) that are the same as Listing 7-34. Here, we use the intersect operator between the sequences.
This could be used to tell us, for example, which luxury hotels are within a certain range from two
locations.

...
let $placesCloseToHome := my:in-range (-111.651862515931, 40.00652821419428, 12)
let $placesCloseToJim := my:in-range (-93.51860234945821, 45.0018515180072, 12)
return $placesCloseToHome intersect $placesCloseToJim

The Broadmoor

The set difference identifies all nodes in one set, but not in the other. This, too, is a simple oper-
ation, using XQuery’s difference operator, except, which returns all nodes from the first set that are
not in the second set.

...
return $placesCloseToHome except $placesCloseToJim

Finally, the symmetric difference is the list of nodes that are only in one of the sequences, and
not both. This is computed with a union between the difference of each set.

...
return ($placesCloseToHome except $placesCloseToJim)

union ($placesCloseToJim except $placesCloseToHome)

It’s important to remember that they set operations for node values only. XQuery does provide
the distinct-values() function for computing the union of untyped value sequences, but does not
have built-in functions for arbitrary value intersection or difference. These operations require itera-
tion, which I’ll leave as an exercise to the reader.

Indexes and Queries
When determining an indexing strategy, as described in Chapter 6, it’s important to consider the
types of queries you intend to execute. The opposite is true as well, in that queries within BDB XML
must be written with an awareness of the existing indexing strategy. This section considers some of
the previous examples with respect to BDB XML indexing, including some potential pitfalls to be
avoided.

Query Plans
We won’t delve much more into query plans than we already did in the previous chapter, but do not
be hesitant to examine query plans for any given query to better understand how it utilizes indexes
and areas in which room for improvement can be found. The dbxml shell’s queryPlan command

CHAPTER 7 ■ XQUERY WITH BDB XML 99

6668ch07.qxd 7/14/06 4:10 PM Page 99

functions just like the query command, but instead outputs the processor’s “action plan” in the form
of a syntax tree for your query. Pay particular attention to the Plan elements; each starts with a key
character, followed by the index description for the index that will be used to satisfy that step in the
query operation. A description for each query plan element name is shown in Table 7-2 and a leg-
end for the key characters is shown in Table 7-3. They are valid for BDB XML version 2.2 and are
subject to change.

Table 7-2. Query Plan Element Descriptions

Element Description

<RQPlan/> Raw Query Plan; identifies query steps prior to any optimizations. The
content will describe the plan before variable lookups and before pertinent
indexes are determined.

<POQPlan/> Partially Optimized Query Plan; includes incomplete optimizations.

<OQPlan/> Optimized Query Plan; describes a query step after optimization. It names
the index used to look up the query step’s result.

Table 7-3. Query Plan Key Legend

Key Description

P Presence lookup; the named index is used to determine the presence of a
node, as opposed to node value for equality or substring tests.

V Value lookup; the index is used to look up the value of a node to satisfy an
equality or substring test.

R Range lookup; the index is used to satisfy a range query.

D Document name lookup; the index is used to get a document’s name as
metadata.

U Universal set; all documents in the container are used to satisfy the query
step.

E Empty set; no documents in the container are used to satisfy the query step.

n Intersection; sets are being intersected to satisfy the query step.

u Union; a set union operation is being performed to satisfy the query step.

Primarily the <OQPlan/> elements can help you understand the query results and their lookup
speed. Within the dbxml shell, turning up verbosity (with the setVerbose command) will yield addi-
tional information upon query execution, including query processing times.

It’s worth noting that node and edge indexes can be used to satisfy presence tests, making pres-
ence indexes the “lowest common denominator” as far as indexes are concerned. In other words,
you don’t need presence indexes where you have value indexes. This shortcut has a downside in
that some queries will result in query plans with a P (presence) step where you expect to see a V
(value) lookup. This happens when BDB XML cannot determine the correct type for a lookup from
the query and tests for presence instead of value. In such cases, the query should use some explicit
casting; it isn’t always enough to use the data type functions (string(), number(), and so on) to con-
vert values. In such cases, don’t be afraid to declare additional variables, coping the value of another
using the cast as expression and using the new variable in your expression.

CHAPTER 7 ■ XQUERY WITH BDB XML100

6668ch07.qxd 7/14/06 4:10 PM Page 100

Node Names and Wildcards
BDB XML indexes nodes using their name, not their path within an XML document. The query opti-
mizer needs to know a node’s name to effectively determine the index to use to satisfy the query.
This means that any query that does not know the name of nodes for which it must test cannot take
full advantage of indexes. Consider our people.dbxml container, with XML containing a <phone/>
element with children <home/> and <office/>:

<person id="6645">
...
<phone>

<office>612-555-0133</office>
<home>612-555-9901</home>

</phone>
</person>

We may want to query for any phone number that matches 612-555-9901 and use a query
something like this:

collection("people.dbxml")/person[phone/*/string() = "612-555-9901"]

Unfortunately, this query does not give the query processor enough information to utilize
indexes that exist for the <office/> and <home/> nodes. Going about this with iteration (see
Listing 7-35) doesn’t solve the problem because the <office/> and <home/> indexes are still not
being used for the lookup, as a glance at the query plan will show.

Listing 7-35. A Wildcard Misses the Mark

for $person in collection("people.dbxml")/person
for $phone in $person/phone/*/string()
where $phone = "612-555-9901"
return $person

For this query to work with speed, we’d need to include both node names in the query:

collection("people.dbxml")/person[phone/office eq "612-555-9901" or phone/home eq "612-
555-9901"]

Or we need to use a more “XQuery style,” shown in Listing 7-36.

Listing 7-36. Iterating for Individual Element Tests

for $person in collection("people.dbxml")/person
for $office in $person/phone/office
for $home in $person/phone/home
where $office = "612-555-9901" or $home = "612-555-9901"
return $person

It’s true that XQuery is probably overkill for this example, but if instead we wanted to get the
phone number itself from a record before a cross-lookup that uses it ... you get the idea.

Note that in cases in which you control or create the XML itself, indexing limitations can be
effectively bypassed. Imagine that our people.dbxml files follow this format:

<person id="6645">
...
<phone loc="office">612-555-0133</phone>
<phone loc="home">612-555-9901</phone>

</person>

CHAPTER 7 ■ XQUERY WITH BDB XML 101

6668ch07.qxd 7/14/06 4:10 PM Page 101

And we have an index for the <phone/> elements. Because we plan to perform lookups using its
value, it makes more sense to organize our data in this way. Grabbing the @loc attribute value is a
simple matter after we have the matching node, and if we did want to use the @loc in our query, it
would just mean another index and an appended query. If we make the phone number external, we
have the example in Listing 7-37.

Listing 7-37. Better Queries When You Have Control Over the XML

declare variable $phone xs:string external;
for $person in collection("people.dbxml")/person

where $person/phone eq $phone
return concat($person/name/first, "'s ", $person/phone[string() = $phone]/@loc,

" phone is: ", $phone)

Julie's home phone is: 612-555-9901

You can see why understanding how BDB XML indexes documents is useful for writing effec-
tive queries and why understanding how queries use an indexing strategy is useful for creating that
indexing strategy. But where possible, creating XML that makes it easy to key name-value pairs
within your queries will result in easier queries and simpler indexing strategies.

Queries Against Results
BDB XML permits queries to be executed against the results from a previous query stored in an
XmlResults API object. However, unless these queries use the collection() or doc() functions, they
do not utilize BDB XML indexes. This typically isn’t an issue because the results set is small to begin
with, but keep in mind that if your results sets are potentially large, you won’t have indexes to speed
up queries when issuing subqueries against them. It’s better to get as narrow a results set as you
intend to use with the initial query than to depend on subsequent queries against results to get
needed information.

Conclusion
BDB XML’s query strength lies in XQuery, which combined with BDB XML’s flexible indexing,
enables some powerful processing of large document collections. This chapter has presented a
cross-section of XQuery functionality; more information is available from resources dedicated to
the subject, including the following web locations:

• W3C XQuery 1.0 recommendation: http://www.w3.org/TR/xquery/

• W3C XQuery tutorials: http://www.w3schools.com/xquery/default.asp

• XQuery 1.0 and XPath 2.0 data model: http://www.w3.org/TR/xpath-datamodel/

CHAPTER 7 ■ XQUERY WITH BDB XML102

6668ch07.qxd 7/14/06 4:10 PM Page 102

BDB XML with C++

Although their usage tends to vary with each language’s idiosyncrasies, all of the BDB XML
included APIs share similar if not identical class and function names. Because all APIs derive their
interface from the C++ API—and in fact are built atop the C++ libraries—an understanding of the
C++ API is beneficial alongside any other language. Although not essential, familiarity with the C++
interfaces is particularly useful for understanding the reason for behaviors that might seem confus-
ing as used by the other language interfaces.

This chapter comprises both an overview of using the BDB XML C++ API and a general reference
for all applicable classes. The examples are platform-agnostic. Please refer to Chapter 3, “Installation
and Configuration,” for instructions on building the C++ libraries and compiling the applications
that use them. All the code listings in this chapter are complete in that you should be able to copy
them as shown and compile without trouble, assuming that your environment is properly config-
ured. However, for the sake of readability, unnecessary (but strongly recommended) features such as
exception handling are often omitted.

Compiling Applications
Building programs that use the C++ API requires that Berkeley DB XML and all its required libraries
(refer to Chapter 3) be installed. Compiling on Unix is straightforward, passing the include and
library paths to the compiler. Assuming that you are using g++ and that the distribution’s postbuild
install/ directory has been copied to /usr/local/dbxml/, a BDB XML application called test.cpp
can be built as follows. First, compile the object:

$ g++ -I/usr/local/dbxml/install/include/ -I/usr/local/dbxml/install/include/dbxml/
-c test.cpp

Then link as follows:

$ g++ -o test test.o -L/usr/local/dbxml/install/lib/ -lpathan -lxquery -lxerces-c -ldbxml-
2.2 -ldb_cxx-4.3

The library names might differ depending on your version of BDB XML, but for version 2.2 they
include libpathan, libxquery, libxerces-c, libdbxml, and libdb_cxx (in BDB XML 2.3, xquery and
pathan are replaced with a single library, xqilla). Also note that the BDB XML apps do not link to
libdb because they use the C++ libraries instead (libdb_cxx).

Compiling a program on Windows requires the same libraries and that the include files for each
be available. Each dynamic link library (DLL) must be found in a directory in your PATH, either by
copying them there or adding the installation directories to PATH. Remember that DLLs are installed

103

C H A P T E R 8

6668ch08.qxd 7/17/06 6:55 PM Page 103

by the BDB XML build in the bin/ directory within the distribution. For BDB 2.2, the necessary DLL
files are the following:

libdbxml2x.dll
libdb4x.dll
xerces-x_2.dll
libxquery12.dll
Pathan.dll (VC6)
Pathan_7.1.dll (VC7)

The first pathan DLL is required for Visual Studio/C++ 6, and the second is required for Visual
Studio .NET. Note that version numbers might differ from your installation, depending on the dis-
tribution version.

Assuming that you have installed either a binary distribution or have built BDB XML success-
fully, only the include/ distribution directory is needed for includes, and lib/ is needed for all linking
libraries. If you find the main include/ to be insufficient for satisfying your program’s includes, an
extended list should include the following:

include/
dbxml/include/
db-4.x/build_win32/

The library files to note when building your application (depending on your version of BDB
XML) are as follows:

libdbxml2x.lib
libdb43.lib
xerces-c_x.lib

Note that version numbers might not correspond to your distribution. Here, too, the Xerces
library is needed only when your application makes direct use of the Xerces API. Finally, the lib/
directory contains two versions of these libraries: one for production and another for debug builds,
indicated by the addition of a “d” in the library name.

It is recommended that you refer to (or even copy and use as program templates) the BDB XML
examples, described in Chapter 3 and found in the dbxml/build_win32 directory, to ensure that your
build finds the necessary include, library, and DLL files.

Class Organization
All C++ classes exist in the DbXml namespace, and the header file DbXml.hpp is included at the head
of applications. All examples in this chapter thus begin as follows:

#include "DbXml.hpp"

using namespace DbXml;

The C++ API consists of 19 classes. With few exceptions, BDB XML classes exhibit no virtual
behavior and are not designed to be extended. The major classes are listed in Table 8-1 in their con-
struction (not inheritance) hierarchy, indicating which class objects provide methods to construct
other objects. (In many cases numerous classes provide methods that return or use objects of a given
class, as with the XmlValue class, which is used to store values of different data types. The indents of
class names in Table 8-1 merely indicate where constructors exist, not necessarily all classes that
return objects of a given class.) Omitted are minor classes, but they are covered later in the chapter.

CHAPTER 8 ■ BDB XML WITH C++104

6668ch08.qxd 7/17/06 6:55 PM Page 104

Table 8-1. Major DBD XML C++ Classes

Class Name Description

DbXml A small class to adjust logging settings and define global variables.

XmlManager The main application class, used to create, open, and maintain
containers; execute queries; and create other BDB XML objects.

XmlContainer A container handle, with methods for managing documents,
manipulating indexes, and so on.

XmlIndexSpecification An interface to programmatically manage the indexes for a container.

XmlDocument A document within a container, with methods for getting and
managing content.

XmlResults Encapsulates the results of a query or lookup operation as a sequence
of XmlValue objects.

XmlModify A programmatic interface to modify documents using stepped
changes.

XmlQueryContext Encapsulates the namespaces, variable bindings, and flags for use with
container queries.

XmlUpdateContext Encapsulates the context for updates to a container; all C++ methods
that modify containers take an update context object as a required
parameter.

XmlQueryExpression A parsed/prepared XQuery expression.

XmlException The BDB XML exception class, thrown during and representing error
conditions.

XmlTransaction The BDB XML transaction object.

XmlValue Used to store XML node values when retrieving and storing data, and to
encapsulate typed atomic values (strings, decimals, dates).

DbEnv A Berkeley DB class for managing a DB environment.

Errors and Exception Handling
BDB XML C++ operations throw exceptions when errors are encountered. They are thrown as
XmlException objects. Therefore, all methods should be executed in try blocks. These objects are
derived from std::exception from the standard library, so that XmlException can be caught for BDB
XML errors, whereas std::exception can still be caught for other application errors.

Listing 8-1 demonstrates exception handling with the C++ API.

Listing 8-1. Exception Handling

#include "DbXml.hpp"

using namespace DbXml;
int main(void)
{

// Create an XmlManager
XmlManager myManager;
try {

// Open a container

CHAPTER 8 ■ BDB XML WITH C++ 105

6668ch08.qxd 7/17/06 6:55 PM Page 105

XmlContainer myContainer =
myManager.openContainer("container.dbxml");

} catch (XmlException &xe) {
printf ("%s\n", xe.what());

} catch (std::exception &e) {
// Other error handling goes here

}
}

Compiled and run in a directory without a container.dbxml, this program will output this:

Error: No such file or directory

This message is the result of the XmlException::what() method, which returns a string descrip-
tion of the error. The XmlException class also provides methods for retrieval of an error code as well
as a Berkeley DB error number for use when the exception code is DATABASE_ERROR.

Exceptions are often not sufficient to debug problems with your application. In such cases, the
Berkeley DB class DbEnv provides an error stream that can be set to a C++ stream, demonstrated in
Listing 8-2.

Listing 8-2. Setting an Error Stream

#include "DbXml.hpp"

using namespace DbXml;
int main(void)
{

// Create an XmlManager
XmlManager myManager;
myManager.getDbEnv()->set_error_stream(&std::cerr);

}

Using error streams is useful for general debugging as well because the DbXml class allows for
the logging level to be varied. The methods setLogCategory() and setLogLevel() allow for changes
to the granularity of log messages. Listing 8-3 demonstrates activating full debugging categories and
levels. Categories describe the BDB XML subsystem to be logged and include indexer messages,
query messages, and container messages. Levels include debugging, informational messages, and
warnings. A full list of categories and log levels is found in the reference at the end of the chapter.

Listing 8-3. Setting the Log Level

#include "DbXml.hpp"

using namespace DbXml;
int main(void)
{

// Create an XmlManager
XmlManager myManager;
// Set the errors stream to standard out
myManager.getDbEnv()->set_error_stream(&std::cerr);
try {

XmlContainer myContainer = myManager.openContainer("container.dbxml");
DbXml::setLogLevel(DbXml::LEVEL_ALL, true);
DbXml::setLogCategory(DbXml::CATEGORY_ALL, true);

CHAPTER 8 ■ BDB XML WITH C++106

6668ch08.qxd 7/17/06 6:55 PM Page 106

} catch (XmlException &xe) {
// Error handling here

}
}

Opening Environments
As has been discussed, environments are the BDB XML mechanism to provide logging, locking,
and transaction support. Chapter 5, “Environments, Containers, and Documents,” described the
creation of DB environments using the Python API. With C++, an environment needs to exist —
either explicitly or implicitly—for an XmlManager object to operate with it. (Note that in previous
code listings in this chapter, environments have been opened automatically by XmlManager.) Envi-
ronments are not specific to BDB XML, which is why there is no “XML” in the class used to manage
them; DbEnv is used by both Berkeley DB and, by association, Berkeley DB XML applications.

The DbEnv class provides many methods for configuration of a database environment. Here I
discuss instantiation as well as opening and closing environments. An abbreviated reference for
DbEnv is provided in Appendix B, “BDB XML API Reference.”

The DbEnv::open() method takes a directory path, a bitwise OR’d set of environment flags, and a
Unix file mode (ignored on Windows) as arguments. This object will later be passed to the XmlManager
constructor. Listing 8-4 demonstrates the opening of a database environment with a standard set of
flags and exception handling.

Listing 8-4. Opening a Database Environment

#include "DbXml.hpp"

using namespace DbXml;
u_int32_t env_flags = DB_CREATE | // Create if environment doesn't exist

DB_INIT_LOCK | // Initialize the locking subsystem
DB_INIT_LOG | // Initialize the logging subsystem
DB_INIT_MPOOL | // Initialize the cache
DB_INIT_TXN; // Initialize transactions for this environment

std::string envPath("/myEnv");

int main(void)
{

DbEnv *myEnv = new DbEnv(0);
try {

myEnv->open(envPath.c_str(), env_flags, 0);
} catch(DbException &e) {

std::cerr << "Error opening database environment: "
<< envPath << std::endl;

std::cerr << e.what() << std::endl;
} catch(std::exception &e) {

std::cerr << "Error opening database environment: "
<< envPath << std::endl;

std::cerr << e.what() << std::endl;
}

}

An environment is closed automatically when it passes out of scope or can be closed using the
DbEnv::close() method. When doing so, be certain that containers in that environment are closed,
and similar exception handling should be used.

CHAPTER 8 ■ BDB XML WITH C++ 107

6668ch08.qxd 7/17/06 6:55 PM Page 107

XmlManager Class
XmlManager is the primary class for working with containers and for managing the other objects used
within the BDB XML API. It is used to create, open, rename, and delete containers; create document
and context objects; and prepare and execute XQuery queries, to name a few.

Instantiating XmlManager Objects
XmlManager objects are created with their constructor and are destroyed using their destructor and
passing them out of scope. If you provide a DbEnv object to the constructor, XmlManager will automati-
cally close and destroy that DbEnv object for you if you set the DBXML_ADOPT_DBENV flag at instantiation
time. If you do not provide a DbEnv object to XmlManager’s constructor, it will automatically create an
environment for you. This latter option carries some constraints with it because you do not have the
ability to configure subsystems and you must tell XmlManager where to create and open your contain-
ers. It is generally preferable to create your own DbEnv object and pass it to the XmlManager constructor.
Listing 8-5 shows the creation of an XmlManager object using an opened DbEnv.

Listing 8-5. Instantiating an XmlManager

#include "DbXml.hpp"

using namespace DbXml;
int main(void)
{

u_int32_t env_flags = DB_CREATE | // Create environment if it doesn't exist
DB_INIT_LOCK | // Initialize locking
DB_INIT_LOG | // Initialize logging
DB_INIT_MPOOL | // Initialize the cache
DB_INIT_TXN; // Initialize transactions

std::string envPath("/myEnv");
DbEnv *myEnv = new DbEnv(0);
XmlManager *myManager = NULL;

try {
myEnv->open(envPath.c_str(), env_flags, 0);
myManager = new XmlManager(myEnv, DBXML_ADOPT_DBENV);

} catch(DbException &e) {
std::cerr << "Error opening database environment: "

<< envPath << std::endl;
std::cerr << e.what() << std::endl;

} catch (XmlException &xe) {
std::cerr << "Error opening database environment: "

<< envPath
<< " or opening XmlManager." << std::endl;

std::cerr << xe.what() << std::endl;
}

}

Subsequently deleting the myManager object will force a close and destroy on myEnv as well.

Managing Containers
Container creating, opening, renaming, and deleting are performed with the XmlManager object.
Open and create operations share a list of container flags, detailed in the reference at the end of this

CHAPTER 8 ■ BDB XML WITH C++108

6668ch08.qxd 7/17/06 6:55 PM Page 108

chapter. A container is opened using the XmlManager::openContainer() method, and a single con-
tainer might be opened multiple times within your application. The createContainer() method
creates and subsequently opens a container. Containers are closed by allowing the container handle
to go out of scope.

Listing 8-6 demonstrates a simple container creation. This and subsequent code examples
tend to omit the environment instantiation for the sake of brevity, although normally DbEnv would
be used.

Listing 8-6. Creating a Container

#include "DbXml.hpp"

using namespace DbXml;
int main(void)
{

XmlManager myManager;
XmlContainer myContainer =

myManager.createContainer("/path/to/myContainer.bdbxml");
return(0);

}

Listing 8-7 shows the creation of a container using more arguments to createContainer(),
including flags to enable transactions for the container and perform validation, a container type,
and a Unix file mode.

Listing 8-7. Creating a Container with a Transaction, Flags, and Container Type

#include "DbXml.hpp"

using namespace DbXml;
int main(void)
{

XmlManager myManager;
XmlContainer myContainer = myManager.createContainer(

"/path/to/myContainer.bdbxml",
DBXML_ALLOW_VALIDATION,
XmlContainer::NodeContainer, 766);

return(0);
}

Opening an already-created container uses an identical syntax with the XmlManager::
openContainer() method. The same set of arguments and flags are accepted as createContainer(),
but some have no use unless the DB_CREATE flag is used with the call to openContainer(). For exam-
ple, a container type cannot be set on an already-created container, and DB_EXCL (to throw an error
if a container exists) is relevant only when creating a new container.

Listing 8-8 demonstrates the opening of a container twice, in which case two object refer-
ences are created. Remember that a container is automatically closed when its references pass out
of scope.

Listing 8-8. Opening a Container

#include "DbXml.hpp"

using namespace DbXml;
int main(void)
{

CHAPTER 8 ■ BDB XML WITH C++ 109

6668ch08.qxd 7/17/06 6:55 PM Page 109

XmlManager myManager;
XmlContainer myContainer = myManager.openContainer("/path/to/myContainer.bdbxml");
return(0);
// Container will be closed at the end of main()

}

Renaming and deleting containers is performed using the XmlManager::renameContainer() and
XmlManager::removeContainer() methods, and both succeed only on unopened containers. The first
takes two string arguments: the current name of the container, and the new name. The second sim-
ply takes the name of the container to remove. Both take an options transaction object as the first
argument. Listing 8-9 demonstrates both.

Listing 8-9. Renaming and Deleting Containers

#include "DbXml.hpp"

using namespace DbXml;
int main(void)
{

XmlManager myManager;
myManager.renameContainer("/path/to/myContainer.bdbxml",

"/new/path/to/myNewContainer.bdbxml");
myManager.removeContainer("/path/to/myContainer2.bdbxml");
return(0);

}

Loading Documents
Documents are most typically loaded into a container directly using XmlManager to create an input
stream, which allows files to be loaded as a string object, from a file on disk, from a network URL, from
a memory buffer, or from standard input. Note that no validation is performed on input streams
by BDB XML. Only when a document is put into a container does the system read from the stream,
parse the content, and validate it. No errors are thrown when an input stream is created using an
invalid location, filename, or so on, until the put operation is performed.

XmlManager provides several methods for creation of these input streams, as listed in Table 8-2.
All these methods return an object of class XmlInputStream, which is then used to load the document
into the container (or into a document object, as will be shown).

Table 8-2. XmlManager’s Input Stream Creation Methods

Method Description

XmlManager::createLocalFileInputStream() Takes as its argument a filename

XmlManager::createURLInputStream() Takes as arguments three URL IDs

XmlManager::createMemBufInputStream() Takes as arguments memory address and byte
counts

XmlManager::createStdInInputStream() Takes no argument

The XmlInputStream object resulting from any of these methods is then used in one of two ways.
Most often, it is passed to the XmlContainer::putDocument() method, which loads the data using the
input stream, parses the document and performs and necessary validation, and then stores the doc-
ument in the container, immediacy depending on whether or not a transaction is used.

CHAPTER 8 ■ BDB XML WITH C++110

6668ch08.qxd 7/17/06 6:55 PM Page 110

■Tip XmlInputStream is one of the few BDB XML classes that is virtual and permits user implementation. This
allows applications to supply XML data from within the program or other source.

Listing 8-10 shows the loading of a document into a container using a local file input stream.

Listing 8-10. Adding a Document to a Container from a Local File

include "DbXml.hpp"

using namespace DbXml;
int main(void)
{

std::string docFilename = "file176.xml"; // the filename

XmlManager myManager;
XmlContainer myContainer = myManager.openContainer("container.bdbxml");

// The update context is needed to add the document.
XmlUpdateContext theContext = myManager.createUpdateContext();

// Create the file input stream
XmlInputStream *myStream = myManager.createLocalFileInputStream(docFilename);

// Put the document in the container
myContainer.putDocument(docFilename, myStream, theContext, 0);

return(0);
}

In this example, the filename as stored in docFilename is used both as the argument to create
the input stream (which would work only if the file was in the current working directory) and the
argument to putDocument() specifying the document name. This isn’t necessarily always or even
usually the case, especially when the document file is outside the current working directory. Note
again that the omission of exception handling from this example (as well as the absence of a DbEnv
and perhaps an XmlTransaction) is for brevity. It is recommended that you do not omit exception
handling from your own code.

■Tip The XmlContainer::putDocument method also provides a convenience syntax, taking a std::string as
the content argument. Given well-formed XML, the content will be parsed and added to the container.

Alternatively, the XmlInputStream is used as the argument to the XmlDocument::
setContentAsXmlInputStream() method, directly setting the content of the in-memory document
object. The XmlDocument object in question could have been created afresh via a call to XmlManager::
createDocument(), in which case it does not yet exist in the container or having been retrieved from
a container with XmlContainer::getDocument().

Finally, an XmlDocument object can be retrieved after a query using the methods of the XmlResults
class. Each technique is demonstrated elsewhere. Refer to the later sections on managing documents
for more details and examples of using the described input streams. The next section discusses the
XmlContainer class in more depth.

CHAPTER 8 ■ BDB XML WITH C++ 111

6668ch08.qxd 7/17/06 6:55 PM Page 111

Preparing and Executing Queries
XQuery queries are performed on containers using the XmlManager object’s prepare() and query()
methods. Because queries can span multiple containers, they are not centric to any one container,
making this the logical class for queries to take place.

The XmlManager::prepare() method takes an XQuery expression string and a query context
object as arguments (and an optional transaction object), returning an XmlQueryExpression object.
This object encapsulates the parsed and optimized XQuery expression for repeated use in multiple
operations. Calling its execute() method evaluates the expression against the containers (or docu-
ments) referred to by the query.

The XmlQueryContext object indicates to the query engine the context within which to perform
a query. This context includes the namespace mappings, variable bindings, and flags to indicate
how a query is to be performed and its results returned—everything the query engine needs to do
its job, given the query string.

Listing 8-11 shows the creation of an XmlQueryContext object, using it to set a default collection
(enabling us to omit the argument to collection() from our query) and then preparing and execut-
ing a query.

Listing 8-11. Using XmlQueryContext

#include "DbXml.hpp"

using namespace DbXml;
int main(void) {

XmlManager myManager;
XmlContainer myContainer = myManager.openContainer("myContainter.dbxml");
XmlQueryContext myContext = myManager.createQueryContext();
myContext.setDefaultCollection("myContainer.dbxml");
std::string myQuery = "collection()/person[name='Bob']";
XmlQueryExpression qe = myManager.prepare(myQuery, myContext);
XmlResults results = qe.execute(myContext);

}

If our XML collection made use of namespaces, we would use the XmlQueryContext object to
define those. Imagine that instead of <person/>, our top-level document elements looked like this:

<people:person xmlns:wordnet="http://brians.org/people">

We could now use the namespace in our query. In Listing 8-12 we declare this namespace map-
ping, and also set a variable for use in the XQuery query.

Listing 8-12. Declaring Namespaces and Variables

#include "DbXml.hpp"

using namespace DbXml;
int main(void) {

XmlManager myManager;
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlQueryContext myContext = myManager.createQueryContext();
myContext.setNamespace("people", "http://brians.org/people");
myContext.setVariableValue("name", "Bob");
std::string myQuery =

"collection('myContainer.dbxml')/people:person[name=$name]";
XmlQueryExpression qe = myManager.prepare(myQuery, myContext);
XmlResults results = qe.execute(myContext);
// Change the variable, and requery without recompiling query.

CHAPTER 8 ■ BDB XML WITH C++112

6668ch08.qxd 7/17/06 6:55 PM Page 112

myContext.setVariableValue("name", "Julie");
results = qe.execute(myContext);

}

Because the XmlQueryContext object is passed to execute() for a prepared query expression,
the context can be manipulated without having to recompile the query expression. Note that in
Listing 8-12 the query variable $name was changed and the query reissued, without recompiling the
prepared query expression.

BDB XML also allows for queries to be executed in a “one-off” fashion, without query prepara-
tion. This is helpful when you know queries will not be used repeatedly. Listing 8-13 demonstrates
the use of the XmlManager::query() method to execute a query once.

Listing 8-13. Performing a One-Off Query

#include "DbXml.hpp"

using namespace DbXml;
int main(void) {

XmlManager myManager;
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlQueryContext myContext = myManager.createQueryContext();
std::string myQuery = "collection('myContainer.dbxml')/person[name='Bob']";
XmlResuts results = myManager.query(myQuery, myContext);

}

In addition to namespaces and variables, XmlQueryContext can determine how queries are exe-
cuted and the values they return. The setEvaluationType() method allows for one of two evaluation
types: eager and lazy.

Table 8-3. Query Evaluation Types

Type Description

XmlQueryContext::Eager The query is executed, with resulting values determined and stored in
memory before the query returns. This is the default.

XmlQueryContext::Lazy The query is executed, but the resulting values are not determined or
stored in memory until the API refers to them by iterating the result set.
This means a query uses less overall memory and makes retrieval of the
first result faster.

Listing 8-14 demonstrates setting the evaluation type to lazy using the setEvaluationType()
method; this type might also be provided to the XmlQueryContext constructor.

Listing 8-14. Querying with Lazy Evaluation

#include "DbXml.hpp"

using namespace DbXml;
int main(void) {

XmlManager myManager;
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlQueryContext myContext = myManager.createQueryContext();
myContext.setEvaluationType(XmlQueryContext::Lazy);
std::string myQuery = "collection('myContainer.dbxml')/person[name='Bob']";
XmlResults results = myManager.query(myQuery, myContext);

}

CHAPTER 8 ■ BDB XML WITH C++ 113

6668ch08.qxd 7/17/06 6:55 PM Page 113

Because the example does not iterate the query results, no values are actually retrieved, having
set the evaluation type to lazy.

Using Query Results
The XmlQueryExpression::execute() and XmlManager::query() methods both return objects of class
XmlResults, used to iterate the result set. The object is a sequence of XmlValue objects, which in turn
represent any of the BDB XML supported data types. The XmlResults uses an iteration interface with
next() and previous() methods to navigate results. Each takes as argument an XmlValue object (or
an XmlDocument object), into which it stores the next or previous result.

Listing 8-15 demonstrates outputting the results of a query to the console. It also uses the
XmlResults::size() method to retrieve the size of the results set.

■Note With a lazily evaluated query, XmlResults acts as an “on-demand” iterator, retrieving results with each
next() method call. Note that previous() and size() are not available for lazy evaluations, being that the
results are not in memory for reverse iteration, and the size of the result set is not known.

Listing 8-15. Retrieving Query Results

#include "DbXml.hpp"

using namespace DbXml;
int main(void) {

XmlManager myManager;
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlQueryContext myContext = myManager.createQueryContext();
std::string myQuery = "collection('myContainer.dbxml')/person[name='Bob']";
XmlResults results = myManager.query(myQuery, myContext);
printf("%i results from query.\n", results.size());
XmlValue value;
while (results.next(value)) {

XmlDocument myDoc = value.asDocument();
std::string docContent = value.asString();
std::string docName = myDoc.getName();
std::cout << "Document " << docName << ":" << std::endl;
std::cout << docContent << std::endl;

}
}

Note here the use of several new methods, including XmlValue::asString() and
XmlDocument.getName(). Certain pieces of document information, including its name within the
container, are available only by querying directly or retrieving the result as a document. When
your queries require the node values themselves, as opposed to the documents matching a query,
asString() is all that is needed.

The XmlValue class also provides a DOM-like interface to not only retrieve values (as with the
asString() and asDocument() methods) but also to navigate the nodes it represents. Its methods
include getNextSibling(), getAttributes(), and getFirstChild(), making it useful for any post-
query processing that you might need to do on query results.

The BDB XML query engine is capable of evaluating XQuery queries on documents and even
individual query results, in addition to database containers. Listing 8-16 does exactly this by

CHAPTER 8 ■ BDB XML WITH C++114

6668ch08.qxd 7/17/06 6:55 PM Page 114

executing several queries using the XmlValue object. Because our document query will repeat for
each result, it makes sense to prepare this using an XmlQueryExpression object.

Listing 8-16. Querying Results

#include "DbXml.hpp"

using namespace DbXml;
int main(void) {

XmlManager myManager;
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlQueryContext myContext = myManager.createQueryContext();
XmlResults results = myManager.query(

"collection('myContainer.dbxml')/person[name='Bob']", myContext);
printf("%i results from query.\n", results.size());
XmlQueryExpression phoneQuery =

myManager.prepare("/person/phone/string()", myContext);
XmlValue value;
while (results.next(value)) {

XmlQueryContext phoneContext = myManager.createQueryContext();
XmlResults phoneResults = phoneQuery.execute(value, phoneContext);
XmlDocument myDoc = value.asDocument();
std::string docName = myDoc.getName();
std::cout << "Document " << docName << ":" << std::endl;
XmlValue phoneValue;
while (phoneResults.next(phoneValue)) {

std::cout << " Phone: " << phoneValue.asString() << std::endl;
}

}
}

The exact same thing can be done with the XmlDocument object resulting from a call to XmlValue::
asDocument(), passing that object as argument to XmlQueryExpression::execute(). Of course, if we
anticipate only one <phone/> element in this example, we can instead just call XmlResults::next()
instead of creating a while block. Our second query in this example can be relative to the result
node, using the current node (.) instead:

./phone/string()

This same technique of querying results and documents can be useful for pulling data out of
large documents, enabling us to work within the context of previous result sets.

We’ll look more closely at the use of XmlDocument in a later section to demonstrate the retrieval
of metadata.

Creating Other Objects
The bulk of XmlManager’s remaining methods serve to simply construct objects of other DbXml sub-
classes. Many of them have already been demonstrated, as with the XmlManager::createTransaction()
method, which instantiates an XmlTransaction object. All such method names begin with create, and
most default to no-default arguments, serving as basic constructors. They include createDocument()
to instantiate an XmlDocument object, createIndexLookup() to instantiate an XmlIndexLookup
object, createModify() to instantiate an XmlModify object, createQueryContext() to instantiate an
XmlQueryContext object, and createResults() to create an empty XmlResults object. These meth-
ods are examined in the following sections, in which their returned objects are demonstrated.

CHAPTER 8 ■ BDB XML WITH C++ 115

6668ch08.qxd 7/17/06 6:55 PM Page 115

Using XmlContainer
The XmlContainer class provides most of the functionality that concerns a container and its contents,
including the adding, replacing, updating and deleting of documents; direct retrieval of documents
(using the getDocument() method); and management of indexes for the container. If it reads and
writes to the database, it’s probably part of XmlContainer.

As has been shown, an XmlContainer object is created using the XmlManager::createContainer()
and XmlManager::openContainer() methods. With it, documents can be added using the putDocument()
method, taking as argument either an XmlDocument or XmlInputStream. The previous section demon-
strated this while supplying a document name and input stream or document container. The method
will also accept an XML string and will generate document names itself if one is not provided and if
the call includes the DBXML_GEN_NAME flag. Listing 8-17 uses putDocument() without providing a docu-
ment name.

Listing 8-17. Letting BDB XML Generate Document Names

#include "DbXml.hpp"

using namespace DbXml;
int main(void)
{

std::string fileName = "/export/testdoc1.xml";
XmlManager myManager;
XmlContainer myContainer = myManager.openContainer("container.bdbxml");
XmlUpdateContext myContext = myManager.createUpdateContext();
std::string docContent = "<person><name>Bob</name></person>";
myContainer.putDocument("", // The name prefix

docContent, // The document's content as string
myContext, // The update context
DBXML_GEN_NAME); // Autogenerate document name

}

If a name is provided along with the DBXML_GEN_NAME flag, it is used as a prefix for the generated
name. With this usage, BDB XML guarantees the uniqueness of document names, incrementing
them with each call to putDocument().

Documents are deleting from a container using the XmlContainer::deleteDocument() method,
which accepts with the document name or document object as its argument. The latter is useful
when you want to iterate over a result set, deleting each document it contains, without having to
retrieve the document name. This is demonstrated in Listing 8-18.

Listing 8-18. Deleting Documents

#include "DbXml.hpp"

using namespace DbXml;
int main(void) {

XmlManager myManager;
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlQueryContext myContext = myManager.createQueryContext();
XmlUpdateContext myUpdateContext = myManager.createUpdateContext();
XmlResults results = myManager.query(

"collection('myContainer.dbxml')/person[name='Bob']", myContext);
printf("Deleting %i documents matching query.\n", results.size());
XmlDocument docToDelete;

CHAPTER 8 ■ BDB XML WITH C++116

6668ch08.qxd 7/17/06 6:55 PM Page 116

while (results.next(docToDelete)) {
myContainer.deleteDocument(docToDelete, myUpdateContext);

}
}

Note that an XmlDocument object is passed to each call of XmlResults::next(), which is smart
enough to know to store the result there as a complete document.

When we want to replace a document in a container (instead of modifying it in place), we
can use the XmlContainer::updateDocument() method. In fact, this operation works with any
XmlDocument object, setting its name to be identical to the document to be replaced, and handing
it to the updateDocument() method. Normally, we retrieve the document from the database,
set new content using the XmlDocument::setContent() method (or setContentAsDOM() or
setContentAsXmlInputStream()), and save it back to the container. Listing 8-19 retrieves a docu-
ment from the container using the XmlContainer::getDocument() method, before replacing its
content and saving it back to the container.

Listing 8-19. Replacing a Document

#include "DbXml.hpp"

using namespace DbXml;
int main(void) {

XmlManager myManager;
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlQueryContext myContext = myManager.createQueryContext();
XmlUpdateContext myUpdateContext = myManager.createUpdateContext();
XmlDocument myDoc = myContainer.getDocument("114.xml");
myDoc.setContent("<person><name>Charles</name></person>");
myContainer.updateDocument(myDoc, myUpdateContext);

}

The BDB XML API provides two ways to partially modify a document in a container instead of
replacing its contents outright. The first is with the Xerces DOM (which is not examined here), using
the XmlDocument::getContentAsDOM() and XmlDocument::setContentAsDOM() methods. The second is
to use the XmlModify class, which allows a description of changes to be built before applying them to
one or many documents in a container. This process is demonstrated in the following section.

A final major function of the XmlContainer class is the management of container indexes.
Chapter 6, “Indexes,” described the specifics of indexing strategies; here we will examine the
adding, deleting, and examining of indexes from the API.

Indexes can be added using an index description string, as demonstrated in Listing 8-20.

Listing 8-20. Adding an Index to a Container with an Index Description String

#include "DbXml.hpp"

using namespace DbXml;
int main(void) {

XmlManager myManager;
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlUpdateContext myUpdateContext = myManager.createUpdateContext();
myContainer.addIndex("", "person", "node-element-equality-string", myUpdateContext);

}

The XmlContainer::getIndexSpecification() method returns an index specification for
the container, encapsulating a description of all current indexes. It provides the addIndex() and

CHAPTER 8 ■ BDB XML WITH C++ 117

6668ch08.qxd 7/17/06 6:55 PM Page 117

deleteIndex() methods to manipulate the index description before applying it back to the container.
The example in Listing 8-21 deletes one index and adds another using an XmlIndexSpecification
object.

Listing 8-21. Manipulating a Container’s Index Specification

#include "DbXml.hpp"

using namespace DbXml;
int main(void) {

XmlManager myManager;
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlUpdateContext myUpdateContext = myManager.createUpdateContext();
XmlIndexSpecification myIndexSpec = myContainer.getIndexSpecification();
myIndexSpec.deleteIndex("", "person", "node-element-equality-string");
myIndexSpec.addIndex("", "name", "node-element-equality-string");
myContainer.setIndexSpecification(myIndexSpec, myUpdateContext);

}

The XmlIndexSpecification object also provides methods for replacing an index, manipulating
the default indexes, and iterating through the indexes within the specification.

One more class bears mentioning in the context of containers and indexes: XmlIndexLookup.
Objects of this class are instantiated by XmlManager::createIndexLookup() and enable the retrieval
of all nodes or documents that have keys in any given index. An example is shown in Listing 8-22.

Listing 8-22. Listing All Documents Referenced by an Index

#include "DbXml.hpp"

using namespace DbXml;
int main(void) {

XmlManager myManager;
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlQueryContext myQueryContext = myManager.createQueryContext();

XmlIndexLookup myLookup = myManager.createIndexLookup(myContainer,
"", "firstName", "node-element-equality-string");

XmlResults myResults = myLookup.execute(myQueryContext);
XmlDocument myDoc;
while (myResults.next(myDoc)) {

std::string dummyString;
std::cout << myDoc.getName() << ": " << myDoc.getContent(dummyString)

<< std::endl;
}

}

When a container is of type WholedocContainer, the XmlIndexLookup::execute() operation
always returns entire documents. This is also true for containers of type NodeContainer unless the
DBXML_INDEX_NODES flag was specified at container creation time. In that case, the lookup returns the
individual nodes referred to in the index’s keys.

The XmlIndexLookup class provides further access to an index’s internal workings with methods
to set bounds for ranged lookups and the capability to set a parent node for indexes that use edge
paths rather than node paths. Listing 8-23 shows a direct index lookup for values greater than or
equal to 16, and less than 35, sorted in reverse of the index order.

CHAPTER 8 ■ BDB XML WITH C++118

6668ch08.qxd 7/17/06 6:55 PM Page 118

Listing 8-23. Ranged Index Lookup with Reverse-Sorted Results

#include "DbXml.hpp"

using namespace DbXml;
int main(void) {

XmlManager myManager;
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlQueryContext myQueryContext = myManager.createQueryContext();
XmlIndexLookup myLookup = myManager.createIndexLookup(myContainer, "", "age",

"node-element-equality-decimal",
XmlValue(XmlValue::DECIMAL, 16),

XmlIndexLookup::GTE);
myLookup.setHighBound(XmlValue(XmlValue::DECIMAL, 35), XmlIndexLookup::LT);
XmlResults myResults = myLookup.execute(myQueryContext, DBXML_REVERSE_ORDER);
XmlDocument myDoc;
while (myResults.next(myDoc)) {

std::string dummyString;
std::cout << myDoc.getName() << ": " << myDoc.getContent(dummyString)

<< std::endl;
}

}

XmlIndexLookup can also perform equality and inequality lookups, making it a powerful tool
when you want to deal directly with BDB XML indexes.

Using XmlDocument
The XmlDocument class is used throughout the API primarily as a document handle, passed to and
from methods of other classes. It also provides methods for getting and setting document content
as already demonstrated, getting and setting document metadata, and setting the document’s
name. This section also looks at the use of the XmlModify class to modify documents.

A document’s metadata is set with the XmlDocument::setMetaData() method. Document meta-
data entails an attribute name, value, and an optional URI. This is demonstrated in Listing 8-24.

Listing 8-24. Adding Metadata to a Document

#include "DbXml.hpp"

using namespace DbXml;
int main(void)
{

XmlManager myManager;
std::string URI = "http://brians.org/metadata";
std::string metadataName = "createdOn";
XmlValue metadataValue(XmlValue::DATE_TIME, "2006-02-05T05:23:14");
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlUpdateContext myUpdateContext = myManager.createUpdateContext();
XmlDocument myDoc = myContainer.getDocument("114.xml");
myDoc.setMetaData(URI, metadataName, metadataValue);
myContainer.updateDocument(myDoc, myUpdateContext);

}

Metadata can be retrieved from an XmlDocument using the getMetaData() method, shown in
Listing 8-25.

CHAPTER 8 ■ BDB XML WITH C++ 119

6668ch08.qxd 7/17/06 6:55 PM Page 119

Listing 8-25. Reading Metadata from a Document

#include "DbXml.hpp"

using namespace DbXml;
int main(void)
{

XmlManager myManager;
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlDocument myDoc = myContainer.getDocument("114.xml");
XmlValue metadataValue;
myDoc.getMetaData("http://brians.org/metadata", "createdOn", metadataValue);
std::cout << "Document 114.xml, created on " << metadataValue.asString()

<< std::endl;
}

Using XmlModify
Documents can be modified within a container by using the XmlModify class without the need to
replace the document or copy it to memory. This class enables us to construct a series of steps for
manipulating the contents of a document and then apply it to one or many documents within a
container. It thus becomes a simple matter to perform container-wide document changes.

The XmlModify object is instantiated with a call to XmlManager::createModify(). A series of
methods are exposed to provide for appending content, inserting and replacing content, and renam-
ing and removing nodes. Assume that our database was filled with documents having the following
structure:

<person>
<name>Samuel</name>
<age>51</age>

</person>
We want to create a new attribute node called "type" under the <name/> element, with the

value "given". (Assume that the need to add surnames to the database has been discovered.) This
procedure involves an append changes to our document, appending to the <name/> element. Call-
ing the XmlModify::addAppendStep() method with the target node, the node type we are appending,
and the attribute name and value, we get the example shown in Listing 8-26.

Listing 8-26. Modifying a Document

#include "DbXml.hpp"

using namespace DbXml;
int main(void)
{

XmlManager myManager;
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlQueryContext myQueryContext = myManager.createQueryContext();
XmlUpdateContext myUpdateContext = myManager.createUpdateContext();
XmlModify myModify = myManager.createModify();
XmlQueryExpression myQuery = myManager.prepare("/person/name", myQueryContext);
myModify.addAppendStep(myQuery, XmlModify::Attribute, "type", "given");
XmlDocument myDoc = myContainer.getDocument("114.xml");
XmlValue docValue(myDoc);
myModify.execute(docValue, myQueryContext, myUpdateContext);

}

CHAPTER 8 ■ BDB XML WITH C++120

6668ch08.qxd 7/17/06 6:55 PM Page 120

Any series of XmlModify steps can be included. Note that XmlModify is executed on an XmlValue
instead of an XmlDocument. The execute() method also accepts an XmlResults object, enabling us to
apply the XmlModify object to all documents in a query result. Listing 8-27 performs a query for all
documents that have a /person/name element and adds the @type="given" attribute to each.

Listing 8-27. Modifying All Documents In a Result Set

#include "DbXml.hpp"

using namespace DbXml;
int main(void)
{

XmlManager myManager;
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlQueryContext myQueryContext = myManager.createQueryContext();
XmlUpdateContext myUpdateContext = myManager.createUpdateContext();
XmlModify myModify = myManager.createModify();
XmlQueryExpression myQuery = myManager.prepare("/person/name", myQueryContext);
myModify.addAppendStep(myQuery, XmlModify::Attribute, "type", "given");
XmlResults myResults = myManager.query(

"collection('myContainer.dbxml')/person/name", myQueryContext);
myModify.execute(myResults, myQueryContext, myUpdateContext);

}

This process changes all documents matching the query according to the XmlModify object.
Keep in mind that it can be an expensive operation, but less so than retrieving and replacing each
pertinent document in the container. The API reference at the end of this chapter contains a
description of the XmlModify methods.

Using XmlTransaction
Basic transaction handling was demonstrated early in this chapter, but most code listings have
omitted transactions for the sake of clarity. This section will summarize the functionality of the BDB
XML transactional subsystem and its usage from C++.

■Note Transactional processing is a large topic that cannot be fully covered here. Please refer to the Berkeley
DB documentation for a more in-depth treatment of the subject.

Berkeley DB XML inherits the Berkeley DB transactions, enabling option transactional process-
ing for all operations. Transactions require that certain parameters be set for the environment and
containers within it. Four Berkeley DB subsystems must be enabled for an environment to perform
transactions: locking, logging, the cache, and transactions. With a transactional environment, con-
tainers must be created and opened with the DBXML_TRANSACTIONAL flag. Listing 8-28 shows the
opening of an environment with these flags set and creating a transactional container.

Listing 8-28. Opening an Environment and Container for Transactional Processing

#include "DbXml.hpp"

using namespace DbXml;
int main(void)
{

CHAPTER 8 ■ BDB XML WITH C++ 121

6668ch08.qxd 7/17/06 6:55 PM Page 121

u_int32_t env_flags = DB_CREATE | // Create environment if it doesn't exist
DB_INIT_LOCK | // Initialize locking
DB_INIT_LOG | // Initialize logging
DB_INIT_MPOOL | // Initialize the cache
DB_INIT_TXN; // Initialize transactions

DbEnv myEnv(0);
myEnv.open("/path/to/environment", env_flags, 0);
XmlManager myManager = new XmlManager(myEnv, DBXML_ADOPT_DBENV);
XmlContainer myContainer = myManager.openContainer(

"myContainer.dbxml", DB_CREATE | DBXML_TRANSACTIONAL);
}

With transactions enabled for the environment and container, transaction objects of class
XmlTransaction are instantiated with XmlManager::createTransaction(). The object should be
passed as the first argument to every read and write operation you want to include in the transac-
tion. Note that the transaction object is not container- or database-specific; the same object can be
used for all operations within a given environment. When all operations for the transaction have
been created, XmlTransaction::commit() is called, and the write operations are carried out. This
invalidates the XmlTransaction object, so another must be created for further transactional opera-
tions. If in the course of constructing the transaction an exception is encountered, you should call
XmlTransaction::abort() to terminate the transaction and discard its operations.

■Caution Whenever a container is opened transactionally, BDB XML automatically protects individual writes
for you if you do not use a transaction object. This convenience requires that when you do use transaction objects,
they must be provided to all calls to a modifying operation. Because BDB XML creates another transaction in cases
where an open transaction is missing from the parameter list, self-deadlocking can occur—with each transaction
waiting for the other.

Listing 8-29 contains a complete example of transactional processing, including exception
handling. We would normally use a try/catch block for the environment and container opens, but
have omitted them for brevity.

Listing 8-29. Transactional Processing

#include "DbXml.hpp"

using namespace DbXml;
int main(void)
{

u_int32_t env_flags = DB_CREATE | // Create environment if it doesn't exist
DB_INIT_LOCK | // Initialize locking
DB_INIT_LOG | // Initialize logging
DB_INIT_MPOOL | // Initialize the cache
DB_INIT_TXN; // Initialize transactions

XmlManager *myManager = NULL;
XmlTransaction myTxn;
try {

DbEnv *myEnv = new DbEnv(0);
myEnv->open("/myEnv", env_flags, 0);
myManager = new XmlManager(myEnv, DBXML_ADOPT_DBENV);
XmlContainer myContainer = myManager->openContainer(

"myContainer.dbxml", DB_CREATE | DBXML_TRANSACTIONAL);

CHAPTER 8 ■ BDB XML WITH C++122

6668ch08.qxd 7/17/06 6:55 PM Page 122

myTxn = myManager->createTransaction();

XmlUpdateContext myUpdateContext = myManager->createUpdateContext();
XmlInputStream *theStream =

myManager->createLocalFileInputStream("myfile12.xml");
myContainer.putDocument(myTxn, // the transaction object

"myfile12", // the document's name
theStream, // the document
myUpdateContext, // The update context
0); // Put flags.

myTxn.commit();
} catch(XmlException &error) {

std::cerr << "Error in transaction: "
<< error.what() << "\n"
<< "Aborting." << std::endl;

myTxn.abort();
}

}

As a rule, transactions incur overhead in exchange for database integrity. Overhead can be
minimized by keeping transactions alive for as short a time as possible, lessening the size of data
written on commit (and the duration that containers must be write-locked), and performing fewer
operations within a given transaction.

BDB XML Event API
Berkeley DB XML 2.3 adds an event API to its XML input and output options. At the time of writing,
this interface is not yet released. The event API allows applications to bypass BDB XML’s XML
parsing and serialization, enabling developers to utilize BDB XML databases using their own or
third-party XML parsers and serializers. The event API will also make integration with other XML
technologies an easy task.

The event API adds two classes to those already discussed: XmlEventReader and XmlEventWriter.
Listing 8-30 contains an example of XmlEventReader to read a document using events. XmlDocument::
getContentAsEventReader() creates the reader object, which is then used to generate node events not
unlike a Simple API for XML (SAX) parser.

Listing 8-30. Example of XmlEventReader to Read a Document

XmlDocument doc = container.getDocument("doc12");
XmlEventReader &reader = doc.getContentAsEventReader();
while (reader.hasNext()) {

XmlEventType type = reader.next();
if (type == StartElement) {

cout << "Event is StartElement for node: " <<
reader.getLocalName();

}
reader.close(); // release resources

}

The corresponding writer class allows the reverse, with methods such as writeElement() and
writeAttribute() to feed raw XML to an XmlContainer object.

Please consult the BDB XML (>= 2.3) documentation and website for more details on the
event API.

CHAPTER 8 ■ BDB XML WITH C++ 123

6668ch08.qxd 7/17/06 6:55 PM Page 123

Conclusion
The BDB XML C++ API is the core used by the other language APIs, providing a straightforward
implementation of all BDB XML functionality. Therefore, understanding its workings is useful,
regardless of the API you choose for your applications.

The following resources are the best locations for complete and up-to-date documentation
on the C++ API.

• Sleepycat’s C++ tutorials and complete C++ API reference, hyperlinked for all classes and
methods: http://www.sleepycat.com/xmldocs/.

• The Berkeley DB product FAQs, documentation, and mailing lists: http://dev.sleepycat.com/.

CHAPTER 8 ■ BDB XML WITH C++124

6668ch08.qxd 7/17/06 6:55 PM Page 124

BDB XML with Python

The Python API included with BDB XML exposes all the classes and methods of the C++ API.
Because of Python’s popularity and compatibility across many platforms, it is a popular BDB XML
interface. BDB XML’s Python API is nearly identical to the C++ API, but the interface still feels very
“Python-esque” in usage.

This chapter is both an overview of using BDB XML’s Python API, as well as a general reference
for all applicable classes. As in Chapter 8, “BDB XML with C++,” the code examples are platform-
agnostic. (Refer to Chapter 3, “Installation and Configuration,” for instructions on building the
Python libraries and compiling applications that use them.) All the code listings in this chapter are
complete, in that you should be able to copy them as shown and execute without trouble, assuming
that your environment is properly configured. However, for the sake of readability, unnecessary (but
strongly recommended) features such as exception handling are often omitted.

Running Applications
If your BDB XML libraries are properly compiled, and the Python bindings are successfully built and
installed, executing a Python script that uses the API is simply a matter of importing both the bsddb3
and dbxml modules:

from bsddb3.db import *
from dbxml import *

Note that Python 2.3 and later include a build-in Berkeley DB module: bsddb. The bsddb3 mod-
ule is included with BDB XML and should work in circumstances in which the standard Python
library does not.

The examples included with the BDB XML distribution are located in the directory dbxml/
examples/python/, and demonstrate much of the Python API’s functionality.

■Tip The proper reference for the Python Berkeley DB module is the pybsddb project at http://pybsddb.
sourceforge.net.

Class Organization
The Python API follows the same class organization as the C++ API, but does not require that any
namespace declaration be present.

The major API classes are described in Table 9-1. Omitted are minor classes (they are covered
later in the chapter).

125

C H A P T E R 9

6668ch09.qxd 7/13/06 3:51 PM Page 125

Table 9-1. Major BDB XML Python Classes

Class Name Description

XmlManager The main application class—used to create, open, and maintain
containers; execute queries; and so on.

XmlContainer A container handle with methods for managing documents,
manipulating indexes, and so on.

XmlIndexSpecification An interface to programmatically manage the indexes for a container.

XmlDocument A document within a container with methods for getting and managing
content.

XmlResults Encapsulates the results of a query or lookup operation.

XmlModify A programmatic interface to modifying documents using stepped
changes.

XmlQueryContext Encapsulates the namespaces, variable bindings, and flags for use with
container queries.

XmlUpdateContext Encapsulates the context for updates to a container.

XmlQueryExpression A parsed/prepared XQuery expression.

XmlTransaction The BDB XML transaction object.

XmlValue Used to store XML node values when retrieving and storing data.

DBEnv A Berkeley DB class for managing a DB environment.

Errors and Exception Handling
The BDB XML Python API does not support Python’s native exception classes because the Python
interpreter is halted when the underlying BDB XML libraries throw exceptions. However, surround-
ing database operations in try / except / finally will enable you to catch any RuntimeError thrown
by BDB XML when problems are encountered.

Exceptions are often not sufficient to debug problems with your application. Some additional
granularity is available from the bsddb module in the form of low-level exceptions. Refer to the bsddb
documentation for exception codes and handling.

Environments
Environments provide logging, locking, and transaction support for database containers. Chapter 5,
“Environments, Containers, and Documents,” demonstrated the creation of DB environments using
the Python API; it requires XmlManager object, which has managed the environments automatically in
most examples thus far. Environments are not specific to BDB XML, which is why there is no “XML”
in the class used to manage them; DBEnv is used by both Berkeley DB and, by association, Berkeley
DB XML applications.

The DBEnv class provides many methods for configuration of a database environment. Here I will
discuss only instantiation as well as opening and closing environments.

The DBEnv.open() method takes a directory path, a bitwise OR’d set of environment flags, and
a Unix file mode (ignored on Windows) as arguments. This object is then passed to the XmlManager
constructor. Listing 9-1 demonstrates the opening of a database environment with a standard set
of flags and the instantiation of an XmlManager object.

CHAPTER 9 ■ BDB XML WITH PYTHON126

6668ch09.qxd 7/13/06 3:51 PM Page 126

Listing 9-1. Opening a Database Environment

from bsddb3.db import *
from dbxml import *

myenv = DBEnv()
myenv.open("myenv/",

DB_CREATE|DB_INIT_LOCK|DB_INIT_LOG|DB_INIT_MPOOL|DB_INIT_TXN, 0)
mgr = XmlManager(myenv, 0)

An environment is closed automatically when its object passes out of scope or can be closed
explicitly using the DBEnv.close() method.

XmlManager
XmlManager is the primary class for working with containers and for managing the other objects used
within the BDB XML API. It is used to create, open, rename, and delete containers; create document
and context objects; and prepare and execute XQuery queries, to name a few.

Instantiating XmlManager Objects
XmlManager objects are created with their constructor and are destroyed using their destructor or
passing them out of scope. If you do not provide a DBEnv object to XmlManager’s constructor, it will
automatically create an environment for you. This option carries some constraints with it because
you do not have the ability to configure subsystems and must tell XmlManager where to create and
open your containers. Generally, it is preferable to create your own DBEnv object and pass it to the
XmlManager constructor. Listing 9-1 shows the creation of an XmlManager object using an opened
DBEnv. Note that the scope of a DBEnv object must be “larger” than an XmlManager that uses it.

Managing Containers
Container creating, opening, renaming, and deleting are performed with the XmlManager object.
Open and create operations share a list of container flags, which are detailed in the reference at the
end of this chapter. A container is opened using the XmlManager.openContainer() method, and a
single container can be opened multiple times within your application. The createContainer()
method creates and subsequently opens a container. Containers are closed by allowing the con-
tainer handle to go out of scope or by explicitly deleting them.

Listing 9-2 demonstrates a simple container creation. This example and subsequent code
examples tend to omit the environment instantiation for the sake of brevity, although normally
DBEnv would be used.

Listing 9-2. Creating a Container

from bsddb3.db import *
from dbxml import *

mymgr = XmlManager()
mycontainer = mymgr.createContainer("test.dbxml")

Listing 9-3 shows the creation of a container using some of the possible arguments to
createContainer(), including flags to enable transactions for the container and perform validation
and a container type.

CHAPTER 9 ■ BDB XML WITH PYTHON 127

6668ch09.qxd 7/13/06 3:51 PM Page 127

Listing 9-3. Creating a Container with Flags and Container Type

from bsddb3.db import *
from dbxml import *

myenv = DBEnv()
myenv.open("myenv", DB_CREATE|DB_INIT_LOCK|DB_INIT_LOG|DB_INIT_MPOOL|DB_INIT_TXN, 0)
mymgr = XmlManager(myenv, 0)

mycontainer = mymgr.createContainer("test.dbxml",
DBXML_TRANSACTIONAL|DBXML_ALLOW_VALIDATION,
XmlContainer.NodeContainer)

del mycontainer

■Caution Open containers must be explicitly closed using the Python API to avoid a segmentation fault.

Opening an already-created container uses an identical syntax with the XmlManager.
openContainer() method. The same set of arguments and flags are accepted as createContainer(),
but some have no use unless the DB_CREATE flag is used with the call to openContainer(). For exam-
ple, a container type cannot be set on an already-created container, and DB_EXCL (to throw an error
if a container exists) is only relevant when creating a new container.

Renaming and deleting containers are performed using the XmlManager.renameContainer() and
XmlManager.removeContainer() methods. Both will succeed only on unopened containers. The first
takes two string arguments: the current name of the container and the new name. The second sim-
ply takes the name of the container to remove. Both take an optional transaction object as the first
argument. Listing 9-4 demonstrates both.

Listing 9-4. Renaming and Deleting Containers

from bsddb3.db import *
from dbxml import *

mymgr = XmlManager()

mymgr.renameContainer("test.dbxml", "newtest.dbxml")
mymgr.removeContainer("newtest.dbxml")

Loading Documents
Documents are most typically loaded into a container directly by using XmlManager to create an
input stream. This allows files to be loaded as a string object, from a file on disk, from a network
URL, from a memory buffer, or from standard input. Note that no validation is performed on input
streams by BDB XML. Only when a document is put into a container does the system read from the
stream, parse the content, and validate it. No errors are thrown when an input stream is created
using an invalid location, filename, or so on until the put operation is performed.

XmlManager provides several methods for creation of these input streams, as listed in Table 9-2.
All these methods return an object of class XmlInputStream, which is then used to load the document
into the container (or into a document object, as will be shown).

CHAPTER 9 ■ BDB XML WITH PYTHON128

6668ch09.qxd 7/13/06 3:51 PM Page 128

Table 9-2. XmlManager’s Input Stream Creation Methods

Method Description

XmlManager.createLocalFileInputStream() Takes as its argument a filename

XmlManager.createURLInputStream() Takes as arguments three URL IDs

XmlManager.createMemBufInputStream() Takes as arguments memory address and byte counts

The XmlInputStream object resulting from any of these methods is then used in one of two
ways. Most often, it is passed to the XmlContainer. putDocument() method, which loads the data
using the input stream, parses the document and performs any necessary validation, and then
stores the document in the container. Of course, putDocument() will also accept an XML document
in the form of a string, but the BDB XML input stream can save the overhead in memory of loading
the text via Python as well. Listing 9-5 shows the loading of a document into a container using a
local file input stream.

Listing 9-5. Adding a Document to a Container from a Local File

from bsddb3.db import *
from dbxml import *

mymgr = XmlManager()

mycontainer = mymgr.openContainer("test.dbxml")
xmlucontext = mymgr.createUpdateContext()
xmlinput = mymgr.createLocalFileInputStream("file14.xml")
mycontainer.putDocument("file14", xmlinput, xmlucontext)
del mycontainer

Note that the filename as specified for the input stream is different from the document name
supplied to putDocument(). They could be the same, of course.

An alternative to passing the XmlInputStream object to putDocument() is to supply it as an argu-
ment to the XmlDocument.setContentAsXmlInputStream() method, directly setting the content of the
in-memory document object. The XmlDocument object in question could have been created afresh
via a call to XmlManager.createDocument(), in which case it does not yet exist in the container, or
having been retrieved from a container with XmlContainer.getDocument(). Finally, an XmlDocument
object can be retrieved after a query using the methods of the XmlResults class. Each technique is
demonstrated elsewhere. Refer to the later sections on managing documents for more details and
examples of using the described input streams. The next section discusses the XmlContainer class in
more depth.

Preparing and Executing Queries
XQuery queries are performed on containers using the XmlManager object’s prepare() and query()
methods. Because queries can span multiple containers, they are not centric to any one container,
making this the logical class for queries to take place.

The XmlManager.prepare() method takes an XQuery expression string and a query context object
as arguments (as well as the optional transaction object) and then returns an XmlQueryExpression
object. This object encapsulates the parsed and optimized XQuery expression for repeated use in
multiple operations. Calling its execute() method evaluates the expression against the containers
(or documents) referred to by the query.

CHAPTER 9 ■ BDB XML WITH PYTHON 129

6668ch09.qxd 7/13/06 3:51 PM Page 129

The XmlQueryContext object indicates to the query engine the context within which to perform
a query. This context includes the namespace mappings, variable bindings, and flags to indicate
how a query is to be performed and its results returned—everything the query engine needs to do
its job, given the query string.

Listing 9-6 shows the creation of an XmlQueryContext object, using it to set a default collection
(enabling you to omit collection() from your query), and then preparing and executing a query.

Listing 9-6. Using XmlQueryContext

from bsddb3.db import *
from dbxml import *

mymgr = XmlManager()
myquery = r"collection()/person[name='Bob']"

mycontainer = mymgr.openContainer("test.dbxml")
xmlqcontext = mymgr.createQueryContext()

qcontext.setDefaultCollection("test.dbxml")
queryexp = mymgr.prepare(myquery, qcontext)
results = queryexp.execute(qcontext)

del mycontainer

If the XML collection made use of namespaces, you would use the XmlQueryContext object to
define them. Imagine that instead of <person/>, your top-level document elements looked like this:

<people:person xmlns:wordnet="http://brians.org/people">

You could now use the namespace in your query. In Listing 9-7, you’ll declare this namespace
and also set a variable for use in the XQuery query.

Listing 9-7. Declaring Namespaces and Variables

from bsddb3.db import *
from dbxml import *

mymgr = XmlManager()
myquery = r"collection('test.dbxml')/people:person[name=$name]"
mycontainer = mymgr.openContainer("test.dbxml")
qcontext = mymgr.createQueryContext()

qcontext.setNamespace("people", "http://brians.org/people")
qcontext.setVariableValue("name", XmlValue("Bob"))
queryexp = mymgr.prepare(myquery, qcontext)
results = queryexp.execute(qcontext)
qcontext.setVariableValue("name", XmlValue("Jane"))
results = queryexp.execute(qcontext)

del mycontainer

Because the XmlQueryContext object is passed to execute() for a prepared query expression,
the context can be manipulated without having to recompile the query expression. Note that in
Listing 9-7, the query variable $name was changed and the query reissued without recompiling the
prepared query expression.

BDB XML also allows for queries to be executed in a “one-off” fashion, without query prepara-
tion. This is helpful when you know that queries will not be used repeatedly or when you need

CHAPTER 9 ■ BDB XML WITH PYTHON130

6668ch09.qxd 7/13/06 3:51 PM Page 130

to save the memory used by an XmlQueryExpression object. Listing 9-8 demonstrates the use of
XmlManager’s query() method to execute a query once.

Listing 9-8. Performing a One-Off Query

from bsddb3.db import *
from dbxml import *

mymgr = XmlManager()
myquery = r"collection('test.dbxml')/person[name='Jim']"

mycontainer = mymgr.openContainer("test.dbxml")
qcontext = mymgr.createQueryContext()
results = mymgr.query(myquery, qcontext)

del mycontainer

In addition to namespaces and variables, XmlQueryContext can determine how queries are exe-
cuted and the values they return. The setEvaluationType() method allows for one of two evaluation
types: eager and lazy, defined in Table 9-3.

Table 9-3. Query Evaluation Types

Type Description

XmlQueryContext.Eager The query is executed, with resulting values determined and stored in
memory before the query returns. This is the default.

XmlQueryContext.Lazy The query is executed, but the resulting values are not determined or
stored in memory until the API refers to them by iterating the result set.
This means that a query uses less overall memory and makes retrieval
of the first result faster.

Listing 9-9 demonstrates setting the evaluation type to lazy.

Listing 9-9. Querying with Lazy Evaluation

from bsddb3.db import *
from dbxml import *

mymgr = XmlManager()
myquery = r"collection('test.dbxml')/person[name='Jim']"

mycontainer = mymgr.openContainer("test.dbxml")
qcontext = mymgr.createQueryContext()
qcontext.setEvaluationType(XmlQueryContext.Lazy)
results = mymgr.query(myquery, qcontext)

del mycontainer

Because the example does not iterate the query results, no values are actually retrieved, having
set the evaluation type to lazy.

Using Query Results
The XmlQueryExpression.execute() and XmlManager.query() methods both return objects of class
XmlResults, used to iterate the result set. The object is essentially a collection of XmlValue objects,

CHAPTER 9 ■ BDB XML WITH PYTHON 131

6668ch09.qxd 7/13/06 3:51 PM Page 131

which in turn represent any of BDB XML’s supported data types. The XmlResults uses an iteration
interface with next() and previous() methods to navigate results. Each takes as argument an
XmlValue object (or an XmlDocument object), into which it stores the next or previous result. The
Python API makes this process more idiomatic (although you are free to use next() and previous()
if you choose) by allowing for iteration over XmlResults, resulting in a single XmlValue object per
iteration. Listing 9-10 demonstrates outputting the results of a query to standard out.

Listing 9-10. Retrieving Query Results

from bsddb3.db import *
from dbxml import *

mymgr = XmlManager()
myquery = r"collection('test.dbxml')/person[name='Fred']"

mycontainer = mymgr.openContainer("test.dbxml")
qcontext = mymgr.createQueryContext()

results = mymgr.query(myquery, qcontext)
for value in results:

document = value.asDocument()
name = document.getName()
content = value.asString()
print name, ": ", content

del mycontainer

Note here the use of several new methods, including XmlValue.asString() and XmlDocument.
getName(). Certain pieces of document information, including its name within the container, are
available only by querying directly or retrieving the result as a document. When your queries require
the node values themselves, as opposed to the documents matching a query, asString() is all that is
needed.

The XmlValue class also provides a DOM-like interface to not only retrieve values (as with the
asString() and asDocument() methods) but also to navigate the nodes that the class represents. Its
methods include getNextSibling(), getAttributes(), and getFirstChild(), making it useful for any
postquery processing that you might need to do on query results.

The BDB XML query engine is capable of evaluating XQuery queries on documents and even
individual query results, in addition to database containers. Listing 9-11 does exactly this by execut-
ing several queries using the XmlValue object. Because the document query will repeat for each
result, it makes sense to prepare it by using an XmlQueryExpression object.

Listing 9-11. Querying Results

from bsddb3.db import *
from dbxml import *

mymgr = XmlManager()

mycontainer = mymgr.openContainer("test.dbxml")
qcontext = mymgr.createQueryContext()

results = mymgr.query("collection('test.dbxml')/person[name='Fred']", qcontext)
phonequery = mymgr.prepare("/person/phone", qcontext);

CHAPTER 9 ■ BDB XML WITH PYTHON132

6668ch09.qxd 7/13/06 3:51 PM Page 132

for value in results:
phoneresults = phonequery.execute(value, qcontext)
for phones in phoneresults:

print " phone: ", phoneresults.asString(), "\n"

del mycontainer

The exact same thing can be done with the XmlDocument object resulting from a call to
XmlValue.asDocument(), passing that object as argument to XmlQueryExpression.execute(). Of
course, if you anticipated only one <phone/> element in this example, you could instead just call
XmlResults.next() instead of creating a for block. Note that the same XmlQueryContext object was
used for both the container query and then the result query. The query object retains context infor-
mation for query results, keeping track of a node’s location in the larger document. Because of this,
the second query in this example could have been relative to the result node, using the current node
(.) instead:

./phone/text()

This same technique of querying results and documents can be useful for pulling data out of
large documents, enabling you to work within the context of previous result sets.

You’ll look more closely at the use of XmlDocument in a later section to demonstrate the retrieval
of metadata.

Creating Other Objects
The bulk of XmlManager’s remaining methods serve to simply construct objects of other subclasses.
Many of them have already been demonstrated, as with the XmlManager.createTransaction()
method, which instantiates an XmlTransaction object. All such method names begin with create,
and most take no arguments, serving as basic constructors. They are createDocument() to instantiate
an XmlDocument object, createIndexLookup() to instantiate an XmlIndexLookup object, createModify()
to instantiate an XmlModify object, createQueryContext() to instantiate an XmlQueryContext object,
and createResults() to create an empty XmlResults object. They are examined in the following sec-
tions, in which their returned objects are demonstrated.

Using XmlContainer
The XmlContainer class provides most of the functionality that concerns a container and its con-
tents, including adding, replacing, updating and deleting documents; directly retrieving documents
(using the getDocument() method); and managing indexes for the container.

As has been shown, an XmlContainer object is created using the XmlManager.createContainer()
and XmlManager.openContainer() methods. With it, documents can be added using the putDocument()
method, taking as argument either an XmlDocument or XmlInputStream. The previous section demon-
strated this while supplying a document name and input stream or document container. The method
will also accept an XML string, and will generate document names itself if one is not provided and if
the call includes the DBXML_GEN_NAME flag. Listing 9-12 uses putDocument() without providing a docu-
ment name.

Listing 9-12. Letting BDB XML Generate Document Names

from bsddb3.db import *
from dbxml import *

mymgr = XmlManager()

CHAPTER 9 ■ BDB XML WITH PYTHON 133

6668ch09.qxd 7/13/06 3:51 PM Page 133

mycontainer = mymgr.openContainer("test.dbxml")
ucontext = mymgr.createUpdateContext()

content = r"<person><name>Bob</name></person>"
mycontainer.putDocument("", content, ucontext, DBXML_GEN_NAME)
del mycontainer

If a name is provided along with the DBXML_GEN_NAME flag, it is used as a prefix for the generated
name. With this usage, BDB XML will guarantee the uniqueness of document names, incrementing
them with each put document.

Documents are deleted from a container using the XmlContainer.deleteDocument() method,
which accepts the document name or document object as its argument. The latter is useful when
you want to iterate over a result set, deleting each document it contains, without having to retrieve
the document name. This is demonstrated in Listing 9-13.

Listing 9-13. Deleting Documents

from bsddb3.db import *
from dbxml import *

mymgr = XmlManager()

mycontainer = mymgr.openContainer("test.dbxml")
qcontext = mymgr.createQueryContext()
ucontext = mymgr.createUpdateContext()

results = mymgr.query("collection('test.dbxml')/person[name='Bob']", qcontext)
for result in results:

document = result.asDocument()
print "Deleting document: ", document.getName(), "\n"
mycontainer.deleteDocument(document, ucontext)

del mycontainer

When you want to replace a document in a container (as opposed to programmatically modi-
fying it), you can use the XmlContainer.updateDocument() method. In fact, this operation works
with any XmlDocument object, setting its name to be identical to the document to be replaced and
handing it to the updateDocument() method. Normally, you will retrieve the document from the
database, set new content using the XmlDocument.setContent() method (or setContentAsDOM() or
setContentAsXmlInputStream()), and save it back to the container. Listing 9-14 retrieves a docu-
ment from the container using the XmlContainer.getDocument() method, before replacing its
content and saving it back to the container.

Listing 9-14. Replacing a Document

from bsddb3.db import *
from dbxml import *

mymgr = XmlManager()

mycontainer = mymgr.openContainer("test.dbxml")
qcontext = mymgr.createQueryContext()
ucontext = mymgr.createUpdateContext()

document = mycontainer.getDocument("12.xml")
document.setContent("<person><name>Bob</name></person>")

CHAPTER 9 ■ BDB XML WITH PYTHON134

6668ch09.qxd 7/13/06 3:51 PM Page 134

mycontainer.updateDocument(document, ucontext)

del mycontainer

The BDB XML API provides a more programmatic interface to partially modifying documents
using the XmlModify class, which allows a description of changes to be built before applying them to
one or many documents in a container. This is demonstrated in the following section.

A final major function of the XmlContainer class is the management of container indexes.
Chapter 6, “Indexes,” described the specifics of indexing strategies; this chapter examines adding,
deleting, and examining indexes from the API.

Indexes can be added by using an index description string, as demonstrated in Listing 9-15.

Listing 9-15. Adding an Index to a Container with an Index Description String

from bsddb3.db import *
from dbxml import *

mymgr = XmlManager()

mycontainer = mymgr.openContainer("test.dbxml")
ucontext = mymgr.createUpdateContext()

mycontainer.addIndex("", "person", "node-element-equality-string", ucontext)

del mycontainer

The XmlContainer.getIndexSpecification() method returns an index specification for the con-
tainer, encapsulating a description of all current indexes. It provides the addIndex() and deleteIndex()
methods to manipulate the index description before applying it back to the container. The example
in Listing 9-16 deletes one index and adds another by using an XmlIndexSpecification object.

Listing 9-16. Manipulating a Container’s Index Specification

from bsddb3.db import *
from dbxml import *

mymgr = XmlManager()

mycontainer = mymgr.openContainer("test.dbxml")
ucontext = mymgr.createUpdateContext()

indexspec = mycontainer.getIndexSpecification()
indexspec.deleteIndex("", "person", "node-element-equality-string")
indexspec.addIndex("", "person", "node-attribute-equality-string")
mycontainer.setIndexSpecification(indexspec, ucontext)

del mycontainer

The XmlIndexSpecification object also provides methods for replacing an index, manipulating
the default indexes, and iterating through the indexes within the specification.

One more class bears mentioning in the context of containers and indexes: XmlIndexLookup.
Objects of this class are instantiated by the XmlManager.createIndexLookup() and enable you to
retrieve all nodes or documents that have keys in any given index, as well as perform direct equality
and range lookups. Listing 9-17 shows the listing of all documents for an index.

CHAPTER 9 ■ BDB XML WITH PYTHON 135

6668ch09.qxd 7/13/06 3:51 PM Page 135

Listing 9-17. Listing All Documents Referenced by an Index

from bsddb3.db import *
from dbxml import *

mymgr = XmlManager()
mycontainer = mymgr.openContainer("test.dbxml")
qcontext = mymgr.createQueryContext()

indexlookup = mymgr.createIndexLookup(mycontainer, "", "name", "node-element-equality-
string")
results = indexlookup.execute(qcontext)
for result in results:

document = result.asDocument()
print document.getName(), ": ", document.getContent()

del mycontainer

The XmlIndexLookup.execute() operation returns entire documents unless the DBXML_INDEX_NODES
flag was specified at container creation time, in which case the lookup returns the individual nodes
referred to in the index’s keys.

The XmlIndexLookup class provides further access to an index’s internal workings with methods
to set bounds for ranged lookups, as well as the ability to set a parent node for indexes that use edge
paths rather than node paths.

Using XmlDocument and XmlModify
The XmlDocument class is used throughout the API primarily as a document handle, passed to and
from methods of other classes. It also provides methods for getting and setting document content
(as already demonstrated), getting and setting document metadata, and setting the document’s name.

A document’s metadata is set with the XmlDocument.setMetaData() method. Document meta-
data entails an attribute name, a value, and an optional URI, demonstrated in Listing 9-18.

Listing 9-18. Adding Metadata to a Document

from bsddb3.db import *
from dbxml import *

mymgr = XmlManager()
mycontainer = mymgr.openContainer("test.dbxml")
ucontext = mymgr.createUpdateContext()

uri = "http://brians.org/metadata"
metaname = "createdOn"
metavalue = XmlValue(XmlValue.DATE_TIME, "2006-02-05T05:23:14")
document = mycontainer.getDocument("114.xml")
document.setMetaData(uri, metaname, metavalue)
mycontainer.updateDocument(document, ucontext, DBXML_LAZY_DOCS)

del mycontainer

Metadata can be retrieved from an XmlDocument using the getMetaData() method. This is an
example of a method that doesn’t have a particularly idiomatic usage (in Python), but instead uses
the C++ library calls. Listing 9-19 demonstrates the reading of metadata using the getMetaData()
method.

CHAPTER 9 ■ BDB XML WITH PYTHON136

6668ch09.qxd 7/13/06 3:51 PM Page 136

Listing 9-19. Reading Metadata from a Document

from bsddb3.db import *
from dbxml import *

mymgr = XmlManager()
mycontainer = mymgr.openContainer("test.dbxml")

uri = "http://brians.org/metadata"
metaname = "createdOn"
document = mycontainer.getDocument("114.xml")
metavalue = XmlValue()
document.getMetaData(uri, metaname, metavalue)
print "114.xml, created on ", metavalue.asString(), "\n"

del mycontainer

Note that the metavalue variable had to be instantiated and passed as an argument to the
getMetaData() method, which in turn set its value. Because getMetaData() returns a boolean, it is
the required usage.

■Tip Three BDB XML classes implement Python iterators: XmlResults, XmlMetaDataIterator, and
XmlIndexSpecification. They allow idiomatic retrieval of query results, metadata attributes, and index
specifications, respectively.

This section will also look at the use of the XmlModify class to modify documents. Documents
can be modified within a container using the XmlModify class without the need to replace the docu-
ment or copy it to memory. This class enables you to construct a series of steps for manipulating
the contents of a document and then apply it to one or many documents within a container. It
thus becomes a simple matter to perform container-wide document changes.

The XmlModify object is instantiated with a call to XmlManager.createModify(). A series of meth-
ods is exposed to provide for appending content, inserting and replacing content, and renaming and
removing nodes. Assume that your database was filled with documents having the following structure:

<person>
<name>Samuel</name>
<age>51</age>

</person>

You want to create a new attribute node called "type" under the <name/> element and with the
value "given". (You can assume that the need to add surnames to the database has been discov-
ered.) This involves an append change to your document, appending to the <name/> element. If you
call the XmlModify.addAppendStep() method with the target node, the node type you are appending,
and the attribute name and value, you get the example in Listing 9-20.

Listing 9-20. Modifying a Document

from bsddb3.db import *
from dbxml import *

mymgr = XmlManager()
mycontainer = mymgr.openContainer("test.dbxml")
qcontext = mymgr.createQueryContext()
ucontext = mymgr.createUpdateContext()

CHAPTER 9 ■ BDB XML WITH PYTHON 137

6668ch09.qxd 7/13/06 3:51 PM Page 137

mymodify = mymgr.createModify()
queryexp = mymgr.prepare("/person/name", qcontext)
mymodify.addAppendStep(queryexp, XmlModify.Attribute, "type", "given")
document = mycontainer.getDocument("61.xml")
docvalue = XmlValue(document)
mymodify.execute(docvalue, qcontext, ucontext)

del mycontainer

Any series of XmlModify steps could be included. Note that XmlModify is executed on an XmlValue
instead of on an XmlDocument. The execute() method will also accept an XmlResults object, enabling
you to apply the XmlModify object to all documents in a query result. Listing 9-21 performs a query
for all documents that have a /person/name element and adds the @type="given" attribute to each.

Listing 9-21. Modifying All Documents in a Result Set

from bsddb3.db import *
from dbxml import *

mymgr = XmlManager()
mycontainer = mymgr.openContainer("test.dbxml")
qcontext = mymgr.createQueryContext()
ucontext = mymgr.createUpdateContext()

mymodify = mymgr.createModify()
queryexp = mymgr.prepare("/person/name", qcontext)
mymodify.addAppendStep(queryexp, XmlModify.Attribute, "type", "given")

results = mymgr.query("collection('test.dbxml')/person[name='Bill']", qcontext)
mymodify.execute(results, qcontext, ucontext)

del mycontainer

This changes all documents matching the query according to the XmlModify object. Keep in
mind that this can be an expensive operation, but less so than retrieving and replacing each perti-
nent document in the container. The API reference at the end of this chapter contains a description
of the all XmlModify methods.

Transactions
Berkeley DB XML inherits Berkeley DB’s transactions, enabling optional transactional processing
for all operations. Transactions require that certain parameters be set for your environment and the
containers within it. Four Berkeley DB subsystems must be enabled for an environment to perform
transactions: locking, logging, the cache, and transactions. With a transactional environment, con-
tainers must be created and opened with the DBXML_TRANSACTIONAL flag.

■Caution Whenever a container is opened transactionally, BDB XML will automatically protect individual writes
for you if you do not use a transaction object. This convenience requires that when you do use transaction objects,
they must be provided to all calls to a modifying operation. Because BDB XML will create another transaction in
cases in which an open transaction is missing from the parameter list, it can result in self-deadlocking, with each
transaction waiting for the other.

CHAPTER 9 ■ BDB XML WITH PYTHON138

6668ch09.qxd 7/13/06 3:51 PM Page 138

The XmlManager.createTransaction() method is used after a container is opened to begin a
transaction, and the resulting XmlTransaction object’s commit() method to complete it (or abort()
to cancel it). Listing 9-22 shows opening of an environment with the appropriate flags set, creating
a transactional container, and adding a document using a transaction object.

Listing 9-22. Creating a Transactional Container and Inserting a Document Transactionally

from bsddb3.db import *
from dbxml import *

environment = DBEnv()
environment.open("myEnv",

DB_CREATE|DB_INIT_LOCK|DB_INIT_LOG|DB_INIT_MPOOL|DB_INIT_TXN, 0)
mymgr = XmlManager(environment, 0)
uc = mymgr.createUpdateContext()
container = mymgr.createContainer("test.dbxml", DBXML_TRANSACTIONAL)
txn = mymgr.createTransaction()
container.putDocument(txn, "doc12", "<person>Bill</person>", uc)
txn.commit()

Conclusion
Python developers should feel right at home with the BDB XML Python API. Its simple interface
makes for compact access to a powerful set of XML database manipulation, index, and query pro-
cessing options.

At the time of writing, an official tutorial or reference for the Python BDB XML API doesn’t exist.
Please refer to Appendix B, “BDB XML API Reference,” for a class and function reference for all APIs,
including Python. Note also that the BDB XML distribution includes Python examples that can serve
as templates for your own applications.

CHAPTER 9 ■ BDB XML WITH PYTHON 139

6668ch09.qxd 7/13/06 3:51 PM Page 139

6668ch09.qxd 7/13/06 3:51 PM Page 140

BDB XML with Java

The Java API included with BDB XML exposes all classes and methods of the C++ API. Because
of the API design and the similarity of the languages, the Java API is nearly identical to the C++
interface, including its exception handling. The primary difference is that manager, container, and
document configurations are handled with configuration classes instead of bitwise OR’d method
parameters.

This chapter is both an overview of using the BDB XML Java API and a general reference for
applicable classes. As in Chapter 9, “BDB XML with Python,” the code examples are platform-
agnostic. Please refer to Chapter 3, “Installation and Configuration,” for instructions on building
Java libraries and compiling the applications that use them. All the code listings in this chapter are
complete, so you should be able to copy them as shown and compile without trouble—assuming
that your environment is properly configured. However, for the sake of readability, unnecessary
(but strongly recommended) features such as exception handling are often omitted.

Running Applications
If your BDB XML libraries are properly compiled and the Java interface is successfully built and
installed, compiling a Java file that uses the API to bytecode is simply a matter of importing the
necessary classes. Unlike some bindings, in Java they are imported individually:

import com.sleepycat.dbxml.XmlContainer;
import com.sleepycat.dbxml.XmlException;
import com.sleepycat.dbxml.XmlManager;

Or they are imported by using a wildcard:

import com.sleepycat.dbxml.*;

All classes necessary to compile BDB XML applications are contained in the dbxml.jar and
db.jar class libraries, installed on Unix by default in the install/lib/ directory of the BDB XML
distribution and in jar/ on Windows. They must be referenced with a CLASSPATH environment
variable or via command-line arguments. Similarly, the dynamic libraries must be found in an
LD_LIBRARY_PATH environment variable or equivalent. The following compiles a class using the
Java API on Unix, given proper class paths:

$ javac -classpath "/path/to/dbxml-x/install/lib/dbxml.jar:/path/to
/dbxml-x/install/lib/db.jar" myDbXml.java

The resulting .class file can then be executed (assuming that it contains a main() method). In
this case, it assumes a class name of myDbXmlTest:

$ java myDbXmlTest

141

C H A P T E R 1 0

6668ch10.qxd 7/19/06 9:00 PM Page 141

The examples included with the BDB XML distribution are located in the dbxml/examples/java/
directory and demonstrate much of the Java API functionality.

Class Organization
The major API classes are listed in Table 10-1 in their construction (not inheritance) hierarchy,
indicating which class objects provide methods to construct other objects. The class names in
Table 10-1 indicate where constructors exist, not necessarily all classes that return objects of a
given class. Omitted are minor classes, but they are covered later in the chapter.

Table 10-1. Major BDB XML Java Classes

Class Name Description

XmlManager The main application class—used to create, open, and maintain
containers; execute queries; and so on

XmlContainer A container handle with methods for managing documents,
manipulating indexes, and so on

XmlIndexSpecification An interface to programmatically manage the indexes for a container

XmlDocument A document within a container with methods for getting and managing
content

XmlResults Encapsulates the results of a query or lookup operation

XmlModify A programmatic interface to modifying documents using stepped
changes

XmlQueryContext Encapsulates the namespaces, variable bindings, and flags for use with
container queries

XmlUpdateContext Encapsulates the context for updates to a container

XmlQueryExpression A parsed/prepared XQuery expression

XmlException A BDB XML exception class, thrown during and representing error
conditions

XmlTransaction A BDB XML transaction object

XmlValue Used to store XML node values when retrieving and storing data

Environment A Berkeley DB class for managing a DB environment

Errors and Exception Handling
BDB XML Java operations throw exceptions when errors are encountered. They are thrown as
XmlException objects, inherited from the Berkeley DB DbException class and derived from the stan-
dard Java Exception class. This process enables you to catch BDB XML exceptions separate from
those of other classes.

Listing 10-1 demonstrates exception handling with the Java API.

Listing 10-1. Exception Handling

import com.sleepycat.dbxml.XmlContainer;
import com.sleepycat.dbxml.XmlException;
import com.sleepycat.dbxml.XmlManager;

CHAPTER 10 ■ BDB XML WITH JAVA142

6668ch10.qxd 7/19/06 9:00 PM Page 142

class myDbXml {
public static void main(String args[]) throws Throwable
{

// Create an XmlManager
XmlManager myManager = null;
try {

// Open a container
XmlContainer myContainer = myManager.openContainer("container.dbxml");
myContainer.delete();

} catch (XmlException e) {
// Error handling goes here

} catch (Exception e) {
// Error handling goes here

}
}

}

Exceptions are often not sufficient to debug problems with your application. In such cases,
the Berkeley DB Environment class provides an error stream that can be set to System.err. The Java
API provides an EnvironmentConfig class for managing settings specific to database environments.
Listing 10-2 demonstrates setting an error stream.

Listing 10-2. Setting an Error Stream

import com.sleepycat.dbxml.*;
import com.sleepycat.db.Environment;
import com.sleepycat.db.EnvironmentConfig;
import java.io.File;

class myDbXml {
public static void main(String args[]) throws Throwable
{

File myDir = new File("myEnv/");

// Open environment
EnvironmentConfig myEnvConf = new EnvironmentConfig();
myEnvConf.setErrorStream(System.err);
Environment myEnv = new Environment(myDir, myEnvConf);

// Create an XmlManager
XmlManagerConfig myManagerConf = new XmlManagerConfig();
XmlManager myManager = new XmlManager(myEnv, myManagerConf);

}
}

Error streams are also useful for general debugging because the XmlManager class enables the
logging level to be varied. The methods setLogCategory() and setLogLevel() allow for changes to the
granularity of log messages. Listing 10-3 demonstrates the activation of full debugging categories and
levels. Categories describe the BDB XML subsystem to be logged and also include indexer messages,
query messages, and container messages. Levels include debugging, informational messages, and
warnings. See Appendix B, “BDB XML API Reference,” for a full list of categories and log levels.

Listing 10-3. Setting the Log Level

import com.sleepycat.dbxml.*;
import com.sleepycat.db.*;
import java.io.*;

CHAPTER 10 ■ BDB XML WITH JAVA 143

6668ch10.qxd 7/19/06 9:00 PM Page 143

class myDbXml {
public static void main(String args[]) throws Throwable
{

File myDir = new File("myEnv/");

// Open environment
EnvironmentConfig myEnvConf = new EnvironmentConfig();
myEnvConf.setErrorStream(System.err);
Environment myEnv = new Environment(myDir, myEnvConf);

// Create an XmlManager
XmlManagerConfig myManagerConf = new XmlManagerConfig();
XmlManager myManager = new XmlManager(myEnv, myManagerConf);
myManager.setLogLevel(XmlManager.LEVEL_ALL, true);
myManager.setLogCategory(XmlManager.CATEGORY_ALL, true);

}
}

Environments
Environments provide logging, locking, and transaction support for database containers. Creating
and opening environments require the XmlManager object, which has managed the environments
automatically in most examples thus far. Environments are not specific to BDB XML, which is why
there is no XML in the class used to manage them; Environment and EnvironmentConfig are used by
Berkeley DB and, by association, Berkeley DB XML applications.

The EnvironmentConfig class provides many methods for configuring a database environment.
This section discusses instantiation (as well as opening and closing environments).

The Environment constructor takes a directory path (as a File object), an EnvironmentConfig
object, and a Unix file mode (ignored on Windows) as arguments, automatically opening the environ-
ment. The object is then passed to the XmlManager constructor. Listing 10-4 demonstrates opening
a database environment with some typical settings and the instantiation of an XmlManager object.

Listing 10-4. Opening a Database Environment

import com.sleepycat.dbxml.*;
import com.sleepycat.db.*;
import java.io.*;

class myDbXml {
public static void main(String args[]) throws Throwable
{

File myDir = new File("myEnv/");

// Open environment
EnvironmentConfig myEnvConf = new EnvironmentConfig();
myEnvConf.setErrorStream(System.err);
myEnvConf.setAllowCreate(true); // create if it doesn't exist
myEnvConf.setInitializeCache(true); // turn on shared memory
myEnvConf.setTransactional(true); // transactions on
myEnvConf.setInitializeLocking(true); // locking on
myEnvConf.setInitializeLogging(true); // logging on
Environment myEnv = new Environment(myDir, myEnvConf);

CHAPTER 10 ■ BDB XML WITH JAVA144

6668ch10.qxd 7/19/06 9:00 PM Page 144

// Create an XmlManager
XmlManagerConfig myManagerConf = new XmlManagerConfig();
XmlManagerConfig.setAdoptEnvironment(true);
XmlManager myManager = new XmlManager(myEnv, myManagerConf);
myManager.setLogLevel(XmlManager.LEVEL_ALL, true);
myManager.setLogCategory(XmlManager.CATEGORY_ALL, true);

}
}

XmlManager
XmlManager is the primary class for working with containers and for managing the other objects used
within the BDB XML API. It is used to create, open, rename, and delete containers; create document
and context objects; and prepare and execute XQuery queries.

Instantiating XmlManager Objects
XmlManager objects are created with their constructor and destroyed using their delete() method.
If you provide an Environment object to the constructor (along with the XmlManagerConfig object
having called setAdoptEnvironment(true)), XmlManager automatically closes that Environment
object. If you do not provide an Environment object to the XmlManager constructor, it automatically
creates an environment for you. This latter option carries some constraints because you do not
have the ability to configure subsystems and you must tell XmlManager where to create and open
your containers. It is generally preferable to create your own Environment object and pass it to the
XmlManager constructor. Listing 10-4 demonstrated the creation of an XmlManager object using an
opened Environment object.

■Caution Because Java garbage collects objects (instead of destroying them when they leave scope), problems
arise for libraries such as BDB XML that require an explicit release of resources. All objects should therefore be
deleted explicitly (they include a delete() method for this purpose).

Managing Containers
You can create, open, rename, and delete containers with the XmlManager object. Open and create
operations share a list of container flags (see Appendix B for more information). A container is
opened by using the XmlManager.openContainer() method, and a single container can be opened
multiple times within your application. The createContainer() method creates and subsequently
opens a container. Containers are closed with the object’s delete() method.

■Caution Take care to always close open containers to avoid stale locks.

Listing 10-5 demonstrates a simple container creation. This example and subsequent code
examples tend to omit the environment instantiation for the sake of brevity (although Environment
would normally be used). The XmlContainerConfig class is used to set options for an opened or
created container. In this case, the container is created to allow XML validation and to be a node

CHAPTER 10 ■ BDB XML WITH JAVA 145

6668ch10.qxd 7/19/06 9:00 PM Page 145

container. Unlike the other language APIs, which take bitwise OR’d flags as arguments, the Java API
enables most configuration options to be set by using these configuration classes.

Listing 10-5. Creating a Container

import com.sleepycat.dbxml.*;
import com.sleepycat.db.*;

class myDbXml {
public static void main(String args[]) throws Throwable
{

// Create an XmlManager
XmlManagerConfig myManagerConf = new XmlManagerConfig();
XmlManager myManager = new XmlManager(myManagerConf);

XmlContainerConfig myContainerConf = new XmlContainerConfig();
myContainerConf.setAllowValidation(true);
myContainerConf.setNodeContainer(true);

XmlContainer myContainer = myManager.createContainer
("myContainer.bdbxml", myContainerConf);

myContainer.delete();
myManager.delete();

}
}

Opening an already-created container uses an identical syntax with the
XmlManager.openContainer() method. The same set of arguments is accepted as createContainer(),
but some arguments have no use unless the XmlContainerConfig.setAllowCreate() flag is set to
true before the call to openContainer(). For example, a container type cannot be set on an already-
created container, and XmlContainerConfig.setExclusiveCreate() is relevant only when creating a
new container (it throws an error if a container exists).

Renaming and deleting containers is performed by using the XmlManager.renameContainer()
and XmlManager.removeContainer() methods. Both succeed only on unopened containers. The first
takes two string arguments: the current name of the container and the new name. The second sim-
ply takes the name of the container to remove. Both take an optional transaction object as the first
argument. Listing 10-6 demonstrates both methods.

Listing 10-6. Renaming and Deleting Containers

import com.sleepycat.dbxml.*;
import com.sleepycat.db.*;

class myDbXml {
public static void main(String args[]) throws Throwable
{

// Create an XmlManager
XmlManager myManager = new XmlManager();
myManager.removeContainer("newtest.dbxml");
myManager.renameContainer("test.dbxml", "newtest.dbxml");
myManager.delete();

}
}

CHAPTER 10 ■ BDB XML WITH JAVA146

6668ch10.qxd 7/19/06 9:00 PM Page 146

Loading Documents
Documents are most efficiently loaded into a container directly by using XmlManager to create an
input stream, which enables files to be loaded as string objects, from a file on disk, from a network
URL, from a memory buffer, or from standard input. Note that no validation is performed on input
streams by BDB XML. Only when a document is put into a container does the system read from the
stream, parse the content, and validate it (not necessarily schema-validated or Data Type Definition
[DTD]–validated). No errors are thrown when an input stream is created using an invalid location,
filename, and so on until the operation is performed.

XmlManager provides several ways to create these input streams, as listed in Table 10-2. All these
methods return an object of class XmlInputStream, which is then used to load the document into the
container (or into a document object, as will be shown).

Table 10-2. XmlManager Input Stream-Creation Methods

Method Description

XmlManager.createLocalFileInputStream() Takes as its argument a filename

XmlManager.createURLInputStream() Takes as arguments three URL IDs

XmlManager.createMemBufInputStream() Takes as arguments memory address and
byte counts

XmlManager.createInputStream() Creates an XmlInputStream from a javaio.
InputStream, taking the latter as argument

The XmlInputStream object resulting from any of these methods is then used in several ways.
Most often, it is passed to the XmlContainer.putDocument() method, which loads the data using the
input stream, parses the document, performs any necessary validation, and then stores the docu-
ment in the container (the immediacy depends on whether a transaction is used). Of course,
putDocument() also accepts an XML document in the form of a string, but the BDB XML input
stream can save the overhead of loading the text. Listing 10-7 loads a document into a container
using a local file input stream.

Listing 10-7. Adding a Document to a Container from a Local File

import com.sleepycat.dbxml.*;

class myDbXml {
public static void main(String args[]) throws Throwable
{

XmlManager myManager = new XmlManager();
XmlContainer myContainer = myManager.openContainer("container.bdbxml");

// The update context is needed to add the document.
XmlUpdateContext theContext = myManager.createUpdateContext();

// Create the file input stream
XmlInputStream myStream =

myManager.createLocalFileInputStream("./file176.xml");

// Put the document in the container
myContainer.putDocument("176", myStream, theContext);

CHAPTER 10 ■ BDB XML WITH JAVA 147

6668ch10.qxd 7/19/06 9:00 PM Page 147

// ... clean up
myUpdateContext.delete();
myContainer.delete();
myManager.delete();

}
}

Note that the filename specified for the input stream is different from the document name
supplied to putDocument(). (They could have the same filename, of course.)

An alternative to passing the XmlInputStream object to putDocument() is to supply it as an argu-
ment to the XmlDocument.setContentAsXmlInputStream() method, directly setting the content of the
in-memory document object. The XmlDocument object in question can be created anew via a call to
XmlManager.createDocument() or be retrieved from a container with XmlContainer.getDocument().
Finally, an XmlDocument object can be retrieved after a query using the methods of the XmlResults
class. See the sections on managing documents for more details and examples of using the described
input streams. The next section discusses the XmlContainer class in more depth.

Preparing and Executing Queries
XQuery queries are performed on containers by using the XmlManager object prepare() and query()
methods. Because queries can span multiple containers, they are not centric to any one container,
so XmlManager is the logical class for queries.

The XmlManager.prepare() method takes an XQuery expression string and a query context
object as arguments (as well as the optional transaction object) and returns an XmlQueryExpression
object. This object encapsulates the parsed and optimized XQuery expression for repeated use in
multiple operations. Calling the execute() method evaluates the expression against the containers
(or documents) referred to by the query.

The XmlQueryContext object indicates to the query engine the context within which to perform
a query. This context includes the namespace mappings, variable bindings, and flags to indicate
how a query is to be performed and its results returned—everything the query engine needs to do
its job given the query string.

Listing 10-8 demonstrates creating an XmlQueryContext object, using it to set a default collec-
tion (enabling you to omit the argument to collection() from the query), and then preparing and
executing a query.

Listing 10-8. Using the XmlQueryContext Object

import com.sleepycat.dbxml.*;
class myDbXml {

public static void main(String args[]) throws Throwable {
XmlManager myManager = new XmlManager();
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");

XmlQueryContext myContext = myManager.createQueryContext();
myContext.setDefaultCollection("myContainer.dbxml");
String myQuery = "collection()/Synset[Word='wisdom']";
XmlQueryExpression qe = myManager.prepare(myQuery, myContext);
XmlResults results = qe.execute(myContext);

// ...
results.delete();
qe.delete();
myContext.delete();

CHAPTER 10 ■ BDB XML WITH JAVA148

6668ch10.qxd 7/19/06 9:00 PM Page 148

myContainer.delete();
myManager.delete();

}
}

■Note Java applications typically put object cleanup in a finally block.

If the XML collection made use of namespaces, you could use the XmlQueryContext object to
define them. Imagine that instead of <person/>, your top-level document elements look like this:

<people:person xmlns:wordnet="http://brians.org/people">

You can now use the namespace in the query. Listing 10-9 declares this namespace and sets a
variable for use in the XQuery expression.

Listing 10-9. Declaring Namespaces and Variables

import com.sleepycat.dbxml.*;

class myDbXml {
public static void main(String args[]) throws Throwable {

XmlManager myManager = new XmlManager();
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");

XmlQueryContext myContext = myManager.createQueryContext();
myContext.setNamespace("people", "http://brians.org/people");
myContext.setVariableValue("name", new XmlValue("Bob"));
String myQuery = "collection('myContainer.dbxml')/people:person[name=$name]";

XmlQueryExpression qe = myManager.prepare(myQuery, myContext);

XmlResults results = qe.execute(myContext);

// ...
results.delete()
qe.delete();
myContext.delete();
myContainer.delete();
myManager.delete();

}
}

Because the XmlQueryContext object is passed to execute() for a prepared query expression, the
context can be manipulated without having to recompile the query expression. In Listing 10-9 the
query variable $name was changed, and the query was reissued without recompiling the prepared
query expression.

BDB XML also enables queries to be executed in a one-off fashion without query preparation.
This process is helpful when you know that the queries will not be used repeatedly or when you
need to save the memory used by an XmlQueryExpression object. Listing 10-10 demonstrates using
the XmlManager query() method to execute a query just once.

CHAPTER 10 ■ BDB XML WITH JAVA 149

6668ch10.qxd 7/19/06 9:00 PM Page 149

Listing 10-10. Performing a One-Off Query

import com.sleepycat.dbxml.*;

class myDbXml {
public static void main(String args[]) throws Throwable {

XmlManager myManager = new XmlManager();
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");

XmlQueryContext myContext = myManager.createQueryContext();
String myQuery = "collection('myContainer.dbxml')/person[name='Jim']";
XmlResults myResults = myManager.query(myQuery, myContext);

// ...
myResults.delete();
myContext.delete();
myContainer.delete();
myManager.delete();

}
}

The XmlQueryContext object can also determine how queries are executed and the values
they return. The setEvaluationType() method allows for two evaluation types: eager and lazy
(see Table 10-3).

Table 10-3. Query Evaluation Types

Type Description

XmlQueryContext.Eager The query is executed with the resulting values determined and stored
in memory before the query returns. This is the default.

XmlQueryContext.Lazy The query is executed, but the resulting values are not determined or
stored in memory until the API refers to them by iterating the result
set. The query uses less overall memory and enables a quicker retrieval
of the first result.

Listing 10-11 demonstrates setting the evaluation type to lazy.

Listing 10-11. Querying with Lazy Evaluation

import com.sleepycat.dbxml.*;

class myDbXml {
public static void main(String args[]) throws Throwable {

XmlManager myManager = new XmlManager();
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");

XmlQueryContext myContext = myManager.createQueryContext();
myContext.setEvaluationType(XmlQueryContext.Lazy);
String myQuery = "collection('myContainer.dbxml')/person[name='Jim']";
XmlResults myResults = myManager.query(myQuery, myContext);

myContainer.close();
myManager.delete();

}
}

CHAPTER 10 ■ BDB XML WITH JAVA150

6668ch10.qxd 7/19/06 9:00 PM Page 150

Because the example does not iterate the query results, no values are actually retrieved (with
the evaluation type set to lazy).

Using Query Results
The XmlQueryExpression.execute() and XmlManager.query() methods return objects of class
XmlResults, which are used to iterate the result set. The object is essentially a collection of XmlValue
objects, which in turn represent any of the BDB XML supported data types. The XmlResults class
uses an iteration interface with the next() and previous() methods to navigate results. Each takes
as argument an XmlValue object (or an XmlDocument object), into which it stores the next or previous
result. Listing 10-12 demonstrates outputting the results of a query to standard output.

Listing 10-12. Retrieving Query Results

import com.sleepycat.dbxml.*;

class myDbXml {
public static void main(String args[]) throws Throwable {

XmlManager myManager = new XmlManager();
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");

XmlQueryContext myContext = myManager.createQueryContext();
String myQuery = "collection('myContainer.dbxml')/person[name='Jim']";

XmlResults myResults = myManager.query(myQuery, myContext);
XmlValue myValue = myResults.next();
while (myValue != null) {

XmlDocument myDocument = myValue.asDocument();
String name = myDocument.getName();
String content = myValue.asString();
System.out.print("Document " + name + ":\n");
System.out.print(content);
myValue = myResults.next();

}

myValue.delete();
myResults.delete();
myQuery.delete();
myContext.delete();
myContainer.delete();
myManager.delete();

}
}

Note the use of several new methods, including XmlValue.asString() and XmlDocument.getName().
Certain pieces of document information, including the name within the container, are available
only by querying directly or retrieving the result as a document. When your queries require the node
values instead of the documents matching a query, asString() is all you need.

The XmlValue class provides a Document Object Model (DOM)–like interface to not only retrieve
values (as with the asString() and asDocument() methods) but also to navigate the nodes it repre-
sents. Because its methods include getNextSibling(), getAttributes(), and getFirstChild(), the
XmlValue class is useful for any post-query processing on query results.

The BDB XML query engine is capable of evaluating XQuery queries on documents and indi-
vidual query results—in addition to database containers. Listing 10-13 does exactly this by executing

CHAPTER 10 ■ BDB XML WITH JAVA 151

6668ch10.qxd 7/19/06 9:00 PM Page 151

several queries using the XmlValue object. Because the document query repeats for each result, it
makes sense to prepare it by using an XmlQueryExpression object.

Listing 10-13. Querying Results

import com.sleepycat.dbxml.*;

class myDbXml {
public static void main(String args[]) throws Throwable {

XmlManager myManager = new XmlManager();
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlQueryContext myContext = myManager.createQueryContext();

XmlQueryExpression mySubquery =
myManager.prepare("/person/phone", myContext);

XmlResults myResults =
myManager.query("collection('myContainer.dbxml')/person[name='Jim']",
myContext);

XmlValue myValue = myResults.next();
while (myValue != null) {

XmlResults subResults = mySubquery.execute(myValue, myContext);
XmlValue subValue = subResults.next();
while (subValue != null) {

XmlDocument myDocument = subValue.asDocument();
String name = myDocument.getName();
String content = subValue.asString();
System.out.print("Document " + name + ":\n");
System.out.print(content);
subValue = subResults.next();

}
myValue = myResults.next();
subValue.delete();
subResults.delete();

}

myValue.delete();
myResults.delete();
mySubquery.delete();
myContext.delete();
myContainer.delete();
myManager.delete();

}
}

Of course, if you anticipate only one <phone/> element in this example, you can just call the
XmlResults.next() method instead of creating a for block.

The second query in this example can be made relative to the result node by using the current
node (.) instead:

./phone/string()

This same technique of querying results and documents can be useful for pulling data out of
large documents, enabling you to work within the context of previous result sets.

You will learn more about the use of XmlDocument to demonstrate the retrieval of metadata later
in this chapter.

CHAPTER 10 ■ BDB XML WITH JAVA152

6668ch10.qxd 7/19/06 9:00 PM Page 152

Creating Other Objects
The bulk of the remaining XmlManager methods serve to construct objects of other BDB XML sub-
classes. Many of them have already been demonstrated, as with the XmlManager.createTransaction()
method, which instantiates an XmlTransaction object. All such method names begin with create and
most take no arguments, serving as basic constructors. These methods include createDocument()
to instantiate an XmlDocument object, createIndexLookup() to instantiate an XmlIndexLookup
object, createModify() to instantiate an XmlModify object, createQueryContext() to instantiate
an XmlQueryContext object, and createResults() to create an empty XmlResults object. These
methods are examined in the following sections, in which their returned objects are demonstrated.

Using XmlContainer
The XmlContainer class provides most of the functionality that concerns a container and its con-
tents, including adding, replacing, updating and deleting documents; directly retrieving documents
(using the getDocument() method); and managing indexes for the container.

An XmlContainer object is created with the XmlManager.createContainer() and
XmlManager.openContainer() methods. Documents can be added by using the putDocument()
method, taking as argument either XmlDocument or XmlInputStream. The previous section demon-
strated this while supplying a document name and input stream or document container. The
method also accepts an XML string; it generates document names if one is not provided and if the
call includes the XmlDocumentConfig.setGenerateName() setting. Listing 10-14 uses putDocument()
without providing a document name.

Listing 10-14. Letting BDB XML Generate Document Names

import com.sleepycat.dbxml.*;

class myDbXml {
public static void main(String args[]) throws Throwable
{

XmlManager myManager = new XmlManager();
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlUpdateContext theContext = myManager.createUpdateContext();
XmlDocumentConfig docConfig = new XmlDocumentConfig();

docConfig.setGenerateName(true);
String content = "<person><name>Bob</name></person>";
myContainer.putDocument("", content, theContext, docConfig);
myContainer.delete();
myManager.delete();

}
}

With this usage, BDB XML guarantees the uniqueness of document names, incrementing them
with each document.

Documents are deleted from a container by using the XmlContainer.deleteDocument() method,
which accepts with the document name or document object as its argument. The latter is useful
when you want to iterate over a result set, deleting each document it contains, without having to
retrieve the document name. Deleting is demonstrated in Listing 10-15.

CHAPTER 10 ■ BDB XML WITH JAVA 153

6668ch10.qxd 7/19/06 9:00 PM Page 153

Listing 10-15. Deleting Documents

import com.sleepycat.dbxml.*;

class myDbXml {
public static void main(String args[]) throws Throwable {

XmlManager myManager = new XmlManager();
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlQueryContext qContext = myManager.createQueryContext();
XmlUpdateContext uContext = myManager.createUpdateContext();
String myQuery = "collection('myContainer.dbxml')/person[name='Steve']";

XmlResults myResults = myManager.query(myQuery, qContext);
XmlValue myValue = myResults.next();
while (myValue != null) {

XmlDocument myDocument = myValue.asDocument();
String name = myDocument.getName();
System.out.print("Deleting " + name + "\n");
myContainer.deleteDocument(myDocument, uContext);
myValue = myResults.next();

}
myContainer.close();

}
}

When you want to update a document in a container (instead of partially modifying it), you can
use the XmlContainer.updateDocument() method. This operation works with any XmlDocument object,
setting its name to be identical to the document to be replaced and handing it to the updateDocument()
method. You normally retrieve the document from the database, set new content using the
XmlDocument.setContent() method (or setContentAsDOM() or setContentAsXmlInputStream()),
and save it back to the container. Listing 10-16 retrieves a document from the container using the
XmlContainer.getDocument() method before replacing its content and saving it back to the container.

Listing 10-16. Replacing a Document

import com.sleepycat.dbxml.*;

class myDbXml {
public static void main(String args[]) throws Throwable
{

XmlManager myManager = new XmlManager();
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlUpdateContext uContext = myManager.createUpdateContext();

XmlDocument myDocument = myContainer.getDocument("12.xml");
myDocument.setContent("<person><name>Bob</name></person>");
myContainer.updateDocument(myDocument, uContext);

myContainer.delete();
myManager.delete();

}
}

The BDB XML API provides a more programmatic interface to partially modifying documents
using the XmlModify class, which enables a description of changes to be built before applying them
to one or many documents in a container. This process is demonstrated in the following section.

CHAPTER 10 ■ BDB XML WITH JAVA154

6668ch10.qxd 7/19/06 9:00 PM Page 154

A final major function of the XmlContainer class is to manage container indexes. Chapter 6,
“Indexes,” described the specifics of indexing strategies; this chapter examines adding, deleting,
and examining indexes from the API.

Indexes can be added by using an index description string, as shown in Listing 10-17.

Listing 10-17. Adding an Index to a Container with an Index Description String

import com.sleepycat.dbxml.*;

class myDbXml {
public static void main(String args[]) throws Throwable
{

XmlManager myManager = new XmlManager();
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlUpdateContext uContext = myManager.createUpdateContext();

myContainer.addIndex("", "person", "node-element-equality-string", uContext);

myContainer.delete();
myManager.delete();

}
}

The XmlContainer.getIndexSpecification() method returns an index specification for the
container, encapsulating a description of all current indexes. It provides the addIndex() and
deleteIndex() methods to manipulate the index description before applying it back to the con-
tainer. The example in Listing 10-18 uses an XmlIndexSpecification object to delete one index and
add another.

Listing 10-18. Manipulating a Container’s Index Specification

import com.sleepycat.dbxml.*;

class myDbXml {
public static void main(String args[]) throws Throwable
{

XmlManager myManager = new XmlManager();
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlUpdateContext uContext = myManager.createUpdateContext();

XmlIndexSpecification myIndexSpec = myContainer.getIndexSpecification();
myIndexSpec.deleteIndex("", "person", "node-element-equality-string");
myIndexSpec.addIndex("", "person", "node-attribute-equality-string");
myContainer.setIndexSpecification(myIndexSpec, uContext);

myContainer.delete();
myManager.delete();

}
}

The XmlIndexSpecification object also provides methods for replacing an index, manipulating
the default indexes, and iterating through the indexes within the specification.

CHAPTER 10 ■ BDB XML WITH JAVA 155

6668ch10.qxd 7/19/06 9:00 PM Page 155

One more class bears mentioning in the context of containers and indexes: XmlIndexLookup.
Objects of this class are instantiated by the XmlManager.createIndexLookup() method and enable
you to retrieve all nodes or documents that have keys in any given index. Listing 10-19 demon-
strates such a lookup operation.

Listing 10-19. Listing All Documents Referenced by an Index

import com.sleepycat.dbxml.*;

class myDbXml {
public static void main(String args[]) throws Throwable {

XmlManager myManager = new XmlManager();
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlQueryContext qContext = myManager.createQueryContext();
XmlIndexLookup myLookup = myManager.createIndexLookup(myContainer, "", "name",

"node-element-equality-string");

XmlResults myResults = myLookup.execute(qContext);
XmlValue myValue = myResults.next();
while (myValue != null) {

XmlDocument myDocument = myValue.asDocument();
String name = myDocument.getName();
System.out.print("Index touches " + name + "\n");
myValue = myResults.next();

}
myContainer.delete();
myManager.delete();

}
}

When a container is of type WholedocContainer, the XmlIndexLookup.execute() operation
always returns entire documents. This is also true for containers of type NodeContainer—unless the
DBXML_INDEX_NODES flag was specified at container-creating time, in which case the lookup returns
the individual nodes referred to in the index’s keys.

The XmlIndexLookup class provides further access to an index’s internal workings with methods
to set bounds for ranged lookups and the capability to set a parent node for indexes that use edge
paths instead of node paths.

Using XmlDocument and XmlModify
The XmlDocument class is primarily used throughout the API as a document handle that is passed to
and from methods of other classes. It also provides methods for getting and setting document con-
tent, getting and setting document metadata, and setting the document’s name. This section will
also look at the use of the XmlModify class to modify documents.

A document’s metadata is set with the XmlDocument.setMetaData() method. Document meta-
data involves an attribute name, value, and an optional Uniform Resource Identifier (URI), as shown
in Listing 10-20.

Listing 10-20. Adding Metadata to a Document

import com.sleepycat.dbxml.*;
import java.io.*;

CHAPTER 10 ■ BDB XML WITH JAVA156

6668ch10.qxd 7/19/06 9:00 PM Page 156

class myDbXml {
public static void main(String args[]) throws Throwable
{

XmlManager myManager = new XmlManager();
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlUpdateContext uContext = myManager.createUpdateContext();

XmlDocument myDocument = myContainer.getDocument("114.xml");
myDocument.setMetaData("http://brians.org/metadata", "createdOn",

new XmlValue(XmlValue.DATE_TIME, "2006-02-05T05:23:14"));
myContainer.updateDocument(myDocument, uContext);

myContainer.delete();
myManager.delete();

}
}

■Caution To avoid retrieving the document when performing nonread operations such as modifying metadata,
use an XmlDocumentConfig object with setLazyDocs() set to true when calling the getDocument() method.

Metadata can be retrieved from an XmlDocument by using the getMetaData() method, as shown
in Listing 10-21.

Listing 10-21. Reading Metadata from a Document

import com.sleepycat.dbxml.*;

class myDbXml {
public static void main(String args[]) throws Throwable
{

XmlManager myManager = new XmlManager();
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlUpdateContext uContext = myManager.createUpdateContext();

XmlDocument myDocument = myContainer.getDocument("114.xml");

XmlValue metaValue = new XmlValue();
myDocument.getMetaData("http://brians.org/metadata", "createdOn", metaValue);
System.out.print("114.xml created on " + metaValue.asString() + "\n");

myContainer.delete();
myManager.delete();

}
}

The metavalue variable had to be instantiated and passed as an argument to the getMetaData()
method, which in turn set its value. Because getMetaData() returns a boolean, it is the required usage.

Documents can be modified within a container by using the XmlModify class without having to
replace the document or copy it to memory. This class enables you to construct a series of steps for
manipulating the contents of a document and then apply it to one or many documents within a
container. It is thus a simple matter to perform container-wide document changes.

CHAPTER 10 ■ BDB XML WITH JAVA 157

6668ch10.qxd 7/19/06 9:00 PM Page 157

The XmlModify object is instantiated with a call to XmlManager.createModify(). A series of meth-
ods is exposed to provide for appending content, inserting and replacing content, and renaming and
removing nodes. Assume that the database was filled with documents having the following structure:

<person>
<name>Samuel</name>
<age>51</age>

</person>

You want to create a new attribute node called type under the <name/> element with the value
"given" (assume that the need to add surnames to the database has been discovered). Doing this
involves an append change to the document—appending to the <name/> element. Calling the
XmlModify.addAppendStep() method with the target node, the node type you are appending, and
the attribute name and value, you get the code shown in Listing 10-22.

Listing 10-22. Modifying a Document

import com.sleepycat.dbxml.*;

class myDbXml {
public static void main(String args[]) throws Throwable
{

XmlManager myManager = new XmlManager();
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlQueryContext qContext = myManager.createQueryContext();
XmlUpdateContext uContext = myManager.createUpdateContext();

XmlModify myModify = myManager.createModify();
XmlQueryExpression myQuery = myManager.prepare("/person/name", qContext);
myModify.addAppendStep(myQuery, XmlModify.Attribute, "type", "given");
XmlDocument myDocument = myContainer.getDocument("114.xml");
XmlValue docValue = new XmlValue(myDocument);
myModify.execute(docValue, qContext, uContext);

myContainer.delete();
myManager.delete();

}
}

Any series of XmlModify steps can be included. Note that XmlModify is executed on an XmlValue
or XmlResults object instead of on XmlDocument. The execute() method also accepts an XmlResults
object, enabling you to apply the XmlModify object to all documents in a query result. Listing 10-23
performs a query for all documents that have a /person/name element and adds the @type="given"
attribute to each.

Listing 10-23. Modifying All Documents in a Result Set

import com.sleepycat.dbxml.*;

class myDbXml {
public static void main(String args[]) throws Throwable
{

XmlManager myManager = new XmlManager();
XmlContainer myContainer = myManager.openContainer("myContainer.dbxml");
XmlQueryContext qContext = myManager.createQueryContext();
XmlUpdateContext uContext = myManager.createUpdateContext();

CHAPTER 10 ■ BDB XML WITH JAVA158

6668ch10.qxd 7/19/06 9:00 PM Page 158

XmlModify myModify = myManager.createModify();
XmlQueryExpression myQuery = myManager.prepare("/person/name", qContext);
myModify.addAppendStep(myQuery, XmlModify.Attribute, "type", "given");
XmlResults myResults = myManager.query

("collection('myContainer.dbxml')/person[name='Bill']", qContext);
myModify.execute(myResults, qContext, uContext);

myContainer.delete();
myManager.delete();

}
}

This listing changes all documents matching the query according to the XmlModify object. Keep
in mind that this can be an expensive operation, but it is cheaper than retrieving and replacing each
pertinent document in the container.

Conclusion
The BDB XML Java API follows its C++ counterpart closely (except for configuration interfaces). This
chapter provided a brief tutorial of its basic functionality, but Appendix B contains a complete API
reference for Java and other languages. Please refer to the C++ API for additional information on
usage and behavior of the various API classes and methods.

More information about the BDB XML API is available from the Javadoc pages that accompany
the distribution and at the following links:

• Berkeley DB XML website at http://www.sleepycat.com

• Sleepycat BDB XML mailing list at xml@sleepycat.com (details at http://dev.sleepycat.com/
community/discussion.html)

CHAPTER 10 ■ BDB XML WITH JAVA 159

6668ch10.qxd 7/19/06 9:00 PM Page 159

6668ch10.qxd 7/19/06 9:00 PM Page 160

BDB XML with Perl

The BDB XML package includes a comprehensive Perl API, Sleepycat::DbXml, which was written
by Paul Marquess (the author of many popular Perl modules).

The official API exposes most of the classes and methods of the C++ API. Note the following
when using the Perl API:

• The XmlResolver class is not supported by the Perl API.

• Perl scalars are used anywhere the C++ API uses std::string as well as XmlData and Dbt
objects (the Perl interface does not need them).

• Where a DbXml method takes an XmlValue parameter, either an XmlValue object or a Perl
scalar can be used.

Other Perl-specific behavior is noted in the following sections.

Running Applications
Having successfully built the BDB XML libraries and Perl interface, the Perl API can be loaded as
follows:

use Sleepycat::DbXml;

The use pragma also accepts the "simple" parameter, which will make XmlTransaction objects
optional to those DbXml methods that support transactions:

use Sleepycat::DbXml "simple";

It is highly recommended to make this your default usage for the module. The Perl examples
included with the BDB XML distribution are located in the directory dbxml/src/perl/examples/ and
demonstrate most of the Perl API’s functionality.

Class Organization
The Perl API follows the same class organization as the C++ API, but does not require that any
namespace declaration be present.

The major API classes are listed in Table 11-1 in their construction (not inheritance) hierarchy,
indicating which class objects provide methods to construct other objects. The indents of class
names in the table indicate where constructors exist; not necessarily all classes that return objects
of a given class. Omitted are minor classes, but they are covered later in the chapter. Note that most

161

C H A P T E R 1 1

6668ch11.qxd 7/13/06 4:42 PM Page 161

BDB XML classes have no virtual behavior and should not be extended directly. This design helps to
keep the various language APIs compatible with the C++ interface with minimal maintenance.

Table 11-1. Major BDB XML Perl Classes

Class Name Description

DbXml A small class to adjust logging settings and implement some global
variables.

XmlManager The main application class. Used to create, open, and maintain
containers; execute queries; and create other BDB XML objects (as
factory objects).

XmlContainer A container handle with methods for managing documents,
manipulating indexes, and so on.

XmlIndexSpecification An interface to programmatically manage the indexes for a container.

XmlDocument A document within a container, with methods for getting and
managing content.

XmlResults Encapsulates the results of a query or lookup operation; a sequence of
XmlValue objects.

XmlModify A programmatic interface to modify documents using stepped
changes.

XmlQueryContext Encapsulates the namespaces, variable bindings, and flags for use with
queries.

XmlUpdateContext Encapsulates the context for updates to a container; used by all
functions that modify a container.

XmlQueryExpression A parsed/prepared XQuery expression.

XmlException The BDB XML exception class thrown during error conditions.

XmlTransaction The BDB XML transaction object.

XmlValue Used to store XML node values when retrieving and storing data.

DbEnv A Berkeley DB class for managing a database environment.

Errors and Exception Handling
The C++ BDB XML interface uses exceptions to report errors. Using the Perl API, these exceptions
should be caught by enclosing code in an eval block and then using the XmlException class to report
errors. They take the following form:

eval {
my $mgr = new XmlManager();
operations here

};

if (my $e = catch XmlException) {
print $e->what();
error handling here

}

The $e object is of class XmlException, which enables specifics of the error to be retrieved
and output. Note the semicolon after the eval { } code; eval is a function, not technically a block
identifier.

CHAPTER 11 ■ BDB XML WITH PERL162

6668ch11.qxd 7/13/06 4:42 PM Page 162

The examples in this chapter omit exception handling in the interest of brevity. You should
enclose all operations in eval blocks and implement exception handling as appropriate for your
particular application.

Environments
Environments provide logging, locking, and transaction support for database containers. As with
the other interfaces, Perl programs can manage environments by using the XmlManager class. Envi-
ronments are not specific to BDB XML, which is why there is no “XML” in the class used to manage
them; DbEnv is used by Berkeley DB and (by association) Berkeley DB XML applications.

The DbEnv class provides many ways to configure a database environment. This section dis-
cusses instantiation as well as opening and closing environments. A reference for DbEnv is provided
in Appendix B, “BDB XML API Reference.”

The DbEnv::open() method takes a directory path, a bitwise OR’d set of environment flags, and
a Unix file mode (ignored on Windows) as arguments. This object is then passed to the XmlManager
constructor. Listing 11-1 demonstrates opening a database environment with a standard set of flags
and instantiating an XmlManager object.

Listing 11-1. Opening a Database Environment

use Sleepycat::DbXml 'simple';
use strict;

my $env = new DbEnv;
$env->open("myenv/", Db::DB_CREATE|Db::DB_INIT_LOCK|Db::DB_INIT_LOG|

Db::DB_INIT_MPOOL|Db::DB_INIT_TXN, 0);

my $mgr = new XmlManager($env, 0);

An environment is closed automatically (along with manager objects) when its object passes
out of scope. It also can be closed explicitly by using the DbEnv::close() method.

XmlManager
XmlManager is used to create, open, rename, and delete containers; create document and context
objects; and prepare and execute XQuery queries.

Instantiating XmlManager Objects
XmlManager objects are created with their constructor and are destroyed by using their destructor
or passing them out of scope. If you do not provide a DbEnv object to the XmlManager constructor, it
will automatically create an environment for you. This latter option carries some constraints with
it because you do not have the ability to configure subsystems and you must tell XmlManager where
to create and open your containers. It is usually preferable to create your own DbEnv object and
pass it to the XmlManager constructor. Listing 11-1 showed the creation of an XmlManager object
using an opened DbEnv object.

Managing Containers
Container creation, opening, renaming, and deletion are all performed with the XmlManager object.
Open and create operations share a list of container flags, detailed in Appendix B. A container is

CHAPTER 11 ■ BDB XML WITH PERL 163

6668ch11.qxd 7/13/06 4:42 PM Page 163

opened by using the XmlManager::openContainer() method, and a single container can be opened
multiple times within your application. The createContainer() method creates and subsequently
opens a container. Containers are closed by enabling the container handle to go out of scope.

Listing 11-2 demonstrates a simple container creation. This example and subsequent code
examples tend to omit the environment instantiation for the sake of brevity, although DbEnv would
normally be used.

Listing 11-2. Creating a Container

use Sleepycat::DbXml 'simple';
use strict;

my $mgr = new XmlManager();
$mgr->createContainer("test.dbxml");

Listing 11-3 shows how to create a container using some of the possible arguments to
createContainer(), including flags to enable transactions for the container, and perform validation
(and also a container type).

Listing 11-3. Creating a Container with Flags and a Container Type

use Sleepycat::DbXml 'simple';
use strict;

my $env = new DbEnv;
$env->open("myenv/",

Db::DB_CREATE|Db::DB_INIT_LOCK|Db::DB_INIT_LOG|
Db::DB_INIT_MPOOL|Db::DB_INIT_TXN, 0);

my $mgr = new XmlManager($env, 0);
my $container = $mgr->createContainer("test.dbxml", DbXml::DBXML_TRANSACTIONAL|

DbXml::DBXML_ALLOW_VALIDATION, XmlContainer::NodeContainer);

Opening an already-created, container uses an identical syntax with the
XmlManager.openContainer() method. The same arguments and flags as createContainer() are
accepted, but some have no use unless the DB_CREATE flag is used with the call to openContainer().
For example, a container type cannot be set on an already-created container, and DB_EXCL (to throw
an error if a container exists) is relevant only when creating a new container.

Renaming and deleting containers is performed using the XmlManager::renameContainer() and
XmlManager::removeContainer() methods. Both will succeed only on unopened containers. The first
takes two string arguments: the current name of the container and the new name. The second sim-
ply takes the name of the container to remove. Both take an optional transaction object as the first
argument. Listing 11-4 demonstrates both.

Listing 11-4. Renaming and Deleting Containers

use Sleepycat::DbXml 'simple';
use strict;

my $mgr = new XmlManager();
$mgr->renameContainer("test.dbxml", "old-test.dbxml");
$mgr->removeContainer("backup-test.dbxml");

CHAPTER 11 ■ BDB XML WITH PERL164

6668ch11.qxd 7/13/06 4:42 PM Page 164

Loading Documents
Documents are most typically loaded into a container directly by using XmlManager to create an
input stream. This process enables files to be loaded as a string object, from a file on disk, from a
network URL, from a memory buffer, or from standard input. Note that no validation is performed
on input streams by BDB XML; only when a document is put into a container does the system read
from the stream, parse the content, and validate it. No errors are thrown when an input stream is
created using an invalid location or filename until the operation is performed.

XmlManager provides several methods for creating these input streams, as listed in Table 11-2.
All these methods return an object of class XmlInputStream, which is then used to load the docu-
ment into the container (or into a document object, as will be shown).

Table 11-2. XmlManager’s Input Stream–Creation Methods

Method Description

XmlManager::createLocalFileInputStream() Takes as its argument a filename

XmlManager::createURLInputStream() Takes as arguments three URL IDs

XmlManager::createMemBufInputStream() Takes as arguments memory address and byte
counts

The XmlInputStream object resulting from any of these methods is then used in one of two
ways. Most often, it is passed to the XmlContainer::putDocument() method, which loads the data
using the input stream, parses the document and performs any necessary validation, and then
stores the document in the container. Of course, putDocument() will also accept an XML document
in the form of a string, but the BDB XML input stream can save the overhead in memory of loading
the text via Perl as well. Listing 11-5 shows loading a document into a container by using a local file
input stream.

Listing 11-5. Adding a Document to a Container from a Local File

use Sleepycat::DbXml 'simple';
use strict;

my $mgr = new XmlManager();
my $container = $mgr->openContainer("test.dbxml");
my $ucontext = $mgr->createUpdateContext();
my $xmlinput = $mgr->createLocalFileInputStream("file14.xml");
$container->putDocument("file14", $xmlinput, $ucontext);

Note that the filename specified for the input stream is different from the document name
supplied to putDocument(). (They could be the same, of course.)

An alternative to passing the XmlInputStream object to putDocument() is to supply it as an argu-
ment to the XmlDocument::setContentAsXmlInputStream() method, directly setting the content of an
in-memory document object. The XmlDocument object in question could have instead been created
via a call to XmlManager::createDocument() (or with new XmlDocument()). In that case, the document
it represents does not yet exist in the container, unlike documents retrieved from a container with
XmlContainer::getDocument(). Finally, an XmlDocument object can be retrieved after a query using
the methods of the XmlResults class. Each technique is demonstrated elsewhere. Refer to the later
sections on managing documents for more details and examples of using the described input
streams. The next section discusses the XmlContainer class in more depth.

CHAPTER 11 ■ BDB XML WITH PERL 165

6668ch11.qxd 7/13/06 4:42 PM Page 165

Preparing and Executing Queries
XQuery queries are performed on containers by using the XmlManager object’s prepare() and
query() methods. Because queries can span multiple containers, they are not centric to any one
container. So XmlManager is the logical class to execute queries.

The XmlManager::prepare() method takes an XQuery expression string and a query context
object as arguments and then returns an XmlQueryExpression object. This object encapsulates
the parsed and optimized XQuery expression for repeated use in multiple operations. Calling the
execute() method evaluates the expression against the containers (or documents) referred to by
the query.

The XmlQueryContext object indicates to the query engine the context within which to perform
a query. This context includes the namespace mappings, variable bindings, and flags to indicate
how a query is to be performed and its results returned—everything the query engine needs to do
its job, given the query string.

Listing 11-6 creates an XmlQueryContext object, uses it to set a default collection (enabling you
to omit the argument to collection() from your query), and then prepares and executes a query.

Listing 11-6. Using XmlQueryContext

use Sleepycat::DbXml 'simple';
use strict;

my $mgr = new XmlManager();
my $query = "collection()/person[name='Bob']";

my $container = $mgr->openContainer("test.dbxml");
my $qcontext = $mgr->createQueryContext();
$qcontext->setDefaultCollection("test.dbxml");

my $query_exp = $mgr->prepare($query, $qcontext);
my $results = $query_exp->execute($qcontext);

If your XML collection made use of namespaces, you would use the XmlQueryContext object to
define them. Imagine that your top-level document elements looked like this instead of <person/>:

<people:person xmlns:wordnet="http://brians.org/people">

You could now use the namespace in your query. Listing 11-7 maps this namespace to the
people prefix and sets a variable for use in the XQuery query.

Listing 11-7. Declaring Namespaces and Variables

use Sleepycat::DbXml 'simple';
use strict;

my $mgr = new XmlManager();
my $query = "collection('test.dbxml')/people:person[name='\$name']";

my $container = $mgr->openContainer("test.dbxml");
my $qcontext = $mgr->createQueryContext();
$qcontext->setNamespace("people", "http://brians.org/people/");
$qcontext->setVariableValue("name", new XmlValue("Bob"));

my $query_exp = $mgr->prepare($query, $qcontext);
my $results = $query_exp->execute($qcontext);

CHAPTER 11 ■ BDB XML WITH PERL166

6668ch11.qxd 7/13/06 4:42 PM Page 166

Because the XmlQueryContext object is passed to execute() for a prepared query expression, the
context can be manipulated without having to recompile the query expression. In Listing 11-7, the
query variable $name (the XQuery variable, not the Perl variable) was changed, and the query was
reissued without recompiling the prepared query expression.

BDB XML also enables queries to be executed in a one-off fashion without query preparation,
which is helpful when you know that queries will not be used repeatedly. Listing 11-8 demonstrates
using the XmlManager query() method to execute a query only once.

Listing 11-8. Performing a One-Off Query

from bsddb3.db import *
use Sleepycat::DbXml 'simple';
use strict;

my $mgr = new XmlManager();
my $query = "collection('test.dbxml')/person[name='Jim']";
my $container = $mgr->openContainer("test.dbxml");
my $qcontext = $mgr->createQueryContext();
my $results = $mgr->query($query, $qcontext);

Besides namespaces and variables, XmlQueryContext can determine how queries are executed
and the values they return. The setEvaluationType() method allows for two evaluation types: eager
and lazy (see Table 11-3).

Table 11-3. Query Evaluation Types

Type Description

XmlQueryContext::Eager The query is executed, with resulting values determined and stored
in memory before the query returns. This is the default.

XmlQueryContext::Lazy The query is executed, but the resulting values are not determined or
stored in memory until the API refers to them by iterating the result
set. This type is useful for queries with large result sets because it
consumes less memory and enables the first result to be retrieved
more quickly.

Listing 11-9 demonstrates setting the evaluation type to lazy.

Listing 11-9. Querying with Lazy Evaluation

use Sleepycat::DbXml 'simple';
use strict;

my $mgr = new XmlManager();
my $query = "collection('test.dbxml')/person[name='Jim']";

my $container = $mgr->openContainer("test.dbxml");
my $qcontext = $mgr->createQueryContext();
$qcontext->setEvaluationType(XmlQueryContext::Lazy);

my $results = $mgr->query($query, $qcontext);

Because this example does not iterate the query results, no values are actually retrieved—the
evaluation type was set to lazy. In the next section, which demonstrates retrieving results, lazy eval-
uation will return the first result as soon as possible and retrieve subsequent results on demand.

CHAPTER 11 ■ BDB XML WITH PERL 167

6668ch11.qxd 7/13/06 4:42 PM Page 167

Using Query Results
The XmlQueryExpression::execute() and XmlManager::query() methods return objects of class
XmlResults, which are used to iterate the result set. The object is a sequence of XmlValue objects (or
an on-demand result iterator for lazy evaluation) that in turn represent any of the BDB XML sup-
ported data types. The XmlResults class uses an iteration interface with the next() and previous()
methods to navigate results. Each takes as argument an XmlValue object (or an XmlDocument object),
into which it stores the next or previous result (although previous() is unavailable with lazily
evaluated queries). Passing a storage scalar to the next() method might seen unidiomatic to Perl
programmers, but doing so makes for concise iteration. Listing 11-10 demonstrates outputting the
results of a query to STDOUT. Here, $value is created as an XmlValue object, but a plain scalar can also
be used.

Listing 11-10. Retrieving Query Results

use Sleepycat::DbXml 'simple';
use strict;

my $mgr = new XmlManager();
my $query = "collection('test.dbxml')//Word";

my $container = $mgr->openContainer("test.dbxml");
my $qcontext = $mgr->createQueryContext();
my $results = $mgr->query($query, $qcontext);

my $value = new XmlValue();
while ($results->next($value)) {

my $document = $value->asDocument();
my $name = $document->getName();
my $content = $value->asString();
print $name . ": " . $content . "\n";

}

Note the use of several new methods, including XmlValue::asString() and XmlDocument::
getName(). Certain pieces of document information, including its name within the container, are
available only by querying directly or retrieving the result as a document. When your queries
require node values instead of the documents matching a query, asString() is all you need.

The XmlValue class also provides a Document Object Model (DOM)–like interface to not only
retrieve values (as with the asString() and asDocument() methods) but also to navigate the nodes it
represents. Its methods include getNextSibling(), getAttributes(), and getFirstChild(), so it is
useful for any post-query processing that you might need to perform on query results.

The BDB XML query engine is capable of evaluating XQuery queries on documents (and even
on individual query results) in addition to database containers. Listing 11-11 does exactly this by
executing several queries using the XmlValue object. Because the document query will repeat for
each result, it makes sense to prepare it by using an XmlQueryExpression object.

Listing 11-11. Querying Results

use Sleepycat::DbXml 'simple';
use strict;

my $mgr = new XmlManager();
my $query = "collection('test.dbxml')/person[name='Fred']";
my $subquery = "/person/phone";

CHAPTER 11 ■ BDB XML WITH PERL168

6668ch11.qxd 7/13/06 4:42 PM Page 168

my $container = $mgr->openContainer("test.dbxml");
my $qcontext = $mgr->createQueryContext();
my $phoneqcontext = $mgr->createQueryContext();

my $results = $mgr->query($query, $qcontext);
my $phonequery = $mgr->prepare($subquery, $phoneqcontext);

my $value = new XmlValue();
my $phonevalue = new XmlValue();
while ($results->next($value)) {

my $phoneresults = $phonequery->execute($value, $phoneqcontext);
while ($phoneresults->next($phonevalue)) {

print $phonevalue->asString() . "\n";
}

}

The same process can be performed with the XmlDocument object resulting from a call to
XmlValue::asDocument(), passing that object as argument to XmlQueryExpression::execute(). Of
course, if you anticipate only one <phone/> element in this example, you can just call XmlResults::
next() instead of creating a while block.

You used different XmlQueryContext objects for the query and the subquery in this example.
Although you could use the same query context, it might not be a safe operation in all cases (for
example, when the main query is lazily evaluated).

The second query in this example could have been relative to the result node by using the cur-
rent node (.) instead:

./phone/string()

This same technique of querying results and documents can be useful for pulling data out of
large documents, enabling you to work within the context of previous result sets.

A later section looks more closely at the use of XmlDocument to demonstrate metadata retrieval.

Creating Other Objects
Most of the remaining XmlManager methods simply construct objects of other DbXml subclasses.
Many of them have already been demonstrated (for example, the XmlManager::createTransaction()
method, which instantiates an XmlTransaction object). All such method names begin with create.
Most take no default arguments, serving as basic constructors. They include createDocument()
to instantiate an XmlDocument object, createIndexLookup() to instantiate an XmlIndexLookup
object, createModify() to instantiate an XmlModify object, createQueryContext() to instantiate an
XmlQueryContext object, and createResults() to create an empty XmlResults object. These meth-
ods are examined in the following sections, in which their returned objects are demonstrated.

Using XmlContainer
The XmlContainer class provides most of the functionality that concerns a container and its contents,
including adding, replacing, updating, and deleting documents; directly retrieving documents (using
the getDocument() method); and managing indexes for the container.

An XmlContainer object is created by using the XmlManager::createContainer() and XmlManager::
openContainer() methods. Documents can be added by using the putDocument() method, taking as
argument either an XmlDocument or XmlInputStream. The previous section demonstrated it while sup-
plying a document name and input stream or document container. The method also accepts an XML

CHAPTER 11 ■ BDB XML WITH PERL 169

6668ch11.qxd 7/13/06 4:42 PM Page 169

string (and generates document names if not provided) if the call supplies the DBXML_GEN_NAME flag.
Listing 11-12 uses putDocument() without providing a document name.

Listing 11-12. Letting BDB XML Generate Document Names

use Sleepycat::DbXml 'simple';
use strict;

my $mgr = new XmlManager();
my $container = $mgr->openContainer("test.dbxml");
my $ucontext = $mgr->createUpdateContext();

my $content = "<person><name>Bob</name></person>";
my $docname = $container->putDocument("", $content, $ucontext,

DbXml::DBXML_GEN_NAME);

With this usage, BDB XML guarantees the uniqueness of document names, incrementing them
with each put document.

Documents are deleted from a container by using the XmlContainer::deleteDocument() method,
which accepts with the document name or document object as its argument. The latter is useful
when you want to iterate over a result set, deleting each document it contains, without having to
retrieve the document name. Listing 11-13 shows document deletion.

Listing 11-13. Deleting Documents

use Sleepycat::DbXml 'simple';
use strict;

my $mgr = new XmlManager();
my $container = $mgr->openContainer("test.dbxml");
my $ucontext = $mgr->createUpdateContext();
my $qcontext = $mgr->createQueryContext();

my $content = "<person><name>Bob</name></person>";
$container->putDocument("", $content, $ucontext, DbXml::DBXML_GEN_NAME);

my $results = $mgr->query("collection('test.dbxml')/person[name='Bob']", $qcontext);
my $value = new XmlValue();
my $phonevalue = new XmlValue();
while ($results->next($value)) {

my $document = $value->asDocument();
print "Deleting document: " . $document->getName() . "\n";
$container->deleteDocument($document, $ucontext);

}

Note that an XmlDocument object is passed to each call of XmlResults::next(), which is “smart”
enough to know to store the result there as a complete document.

When you want to replace a document in a container (instead of modifying it in place), you can
use the XmlContainer::updateDocument() method. This operation works with any XmlDocument object,
setting its name to be identical to the document to be replaced and handing it to the updateDocument()
method. You usually retrieve the document from the database, set new content by using the
XmlDocument::setContent() method (or setContentAsDOM() or setContentAsXmlInputStream()),
and save it back to the container. Listing 11-14 retrieves a document from the container using the
XmlContainer::getDocument() method before replacing its content and saving it back to the container.

CHAPTER 11 ■ BDB XML WITH PERL170

6668ch11.qxd 7/13/06 4:42 PM Page 170

Listing 11-14. Replacing a Document

use Sleepycat::DbXml 'simple';
use strict;

my $mgr = new XmlManager();
my $container = $mgr->openContainer("test.dbxml");
my $ucontext = $mgr->createUpdateContext();

my $newcontent = "<person><name>Bob</name></person>";

my $document = $container->getDocument("file12.xml");
$document->setContent("<person><name>Bob2</name></person>");
$container->updateDocument($document, $ucontext);

The BDB XML API provides a programmatic interface to partially modifying documents using
the XmlModify class, which enables a description of changes to be built before applying them to one
or many documents in a container (demonstrated in the following section).

A final major function of the XmlContainer class is managing container indexes. Chapter 6,
“Indexes,” described the specifics of indexing strategies; this section discusses adding to, deleting
from, and examining indexes of the API.

You can add indexes by using an index description string, as demonstrated in Listing 11-15.

Listing 11-15. Adding an Index to a Container with an Index Description String

use Sleepycat::DbXml 'simple';
use strict;

my $mgr = new XmlManager();
my $container = $mgr->openContainer("test.dbxml");
my $ucontext = $mgr->createUpdateContext();

$container->addIndex("", "person", "node-element-equality-string", $ucontext);

The XmlContainer::getIndexSpecification() method returns an index specification for
the container, encapsulating a description of all current indexes. It provides the addIndex() and
deleteIndex() methods to manipulate the index description before applying it back to the container.
The example in Listing 11-16 deletes one index and adds another using an XmlIndexSpecification
object.

Listing 11-16. Manipulating a Container’s Index Specification

use Sleepycat::DbXml 'simple';
use strict;

my $mgr = new XmlManager();
my $container = $mgr->openContainer("test.dbxml");
my $ucontext = $mgr->createUpdateContext();

my $indexspec = $container->getIndexSpecification();
$indexspec->deleteIndex("", "person", "node-element-equality-string");
$indexspec->addIndex("", "person", "node-attribute-equality-string");
$container->setIndexSpecification($indexspec, $ucontext);

The XmlIndexSpecification object also provides methods for replacing an index, manipulating
the default indexes, and iterating through the indexes within the specification.

CHAPTER 11 ■ BDB XML WITH PERL 171

6668ch11.qxd 7/13/06 4:42 PM Page 171

One more class bears mentioning in the context of containers and indexes: XmlIndexLookup.
Objects of this class are instantiated by XmlManager::createIndexLookup(), and you can retrieve all
nodes or documents that have keys in any given index (see Listing 11-17).

Listing 11-17. Listing All Documents Referenced by an Index

use Sleepycat::DbXml 'simple';
use strict;

my $mgr = new XmlManager();
my $container = $mgr->openContainer("test.dbxml");
my $qcontext = $mgr->createQueryContext();

my $indexlookup = $mgr->createIndexLookup($container, "", "person",
"node-element-equality-string");

my $results = $indexlookup->execute($qcontext);

my $value = new XmlValue();
while ($results->next($value)) {

my $document = $value->asDocument();
print $document->getName() . ": " . $document->getContent();

}

When a container is of type WholedocContainer, the XmlIndexLookup::execute() operation
always returns entire documents. This is also true for containers of type NodeContainer, unless the
DBXML_INDEX_NODES flag was specified when the container was created. In that case, the lookup
returns the individual nodes referred to in the index’s keys.

The XmlIndexLookup class provides further access to an index’s internal workings, enabling
equality and inequality lookups, methods to set bounds for range lookups, and the ability to set a
parent node for indexes that use edge paths rather than node paths.

Using XmlDocument
The XmlDocument class is used throughout the API primarily as a document handle, passed to and
from methods of other classes. It also provides methods for getting and setting document content,
getting and setting document metadata, and setting a document’s name.

A document’s metadata is set with the XmlDocument::setMetaData() method. Included in the
document metadata are a name, a value, and an optional URI. Listing 11-18 adds metadata to
a document.

Listing 11-18. Adding Metadata to a Document

use Sleepycat::DbXml 'simple';
use strict;

my $mgr = new XmlManager();
my $container = $mgr->openContainer("test.dbxml");
my $ucontext = $mgr->createUpdateContext();

my $uri = "http://brians.org/metadata/";
my $metaname = "createdOn";
my $metavalue = new XmlValue(XmlValue::DATE_TIME, "2006-02-05T05:23:14");

CHAPTER 11 ■ BDB XML WITH PERL172

6668ch11.qxd 7/13/06 4:42 PM Page 172

my $document = $container->getDocument("file14.xml");
$document->setMetaData($uri, $metaname, $metavalue);
$container->updateDocument($document, $ucontext);

You can retrieve metadata from an XmlDocument by using the getMetaData() method (see
Listing 11-19).

Listing 11-19. Retrieving Metadata from a Document

use Sleepycat::DbXml 'simple';
use strict;

my $mgr = new XmlManager();
my $container = $mgr->openContainer("test.dbxml");
my $ucontext = $mgr->createUpdateContext();

my $uri = "http://brians.org/metadata/";
my $metaname = "createdOn";
my $metavalue = new XmlValue();

my $document = $container->getDocument("file14.xml");
$document->getMetaData($uri, $metaname, $metavalue);
print "file14.xml, created on " . $metavalue->asString() . "\n";

Note that the $metavalue variable had to be instantiated and passed as an argument to the
getMetaData() method, which in turn set its value. Because getMetaData() returns a boolean, it is
the required usage.

■Tip Metadata can be retrieved just like XML values within queries by using the dbxml:metadata() function.
See Chapter 7, “XQuery with BDB XML,” for details.

Finally, note that containers can contain metadata-only documents that store only metadata
key/value pairs with no XML content.

Using XmlModify
Using the XmlModify class enables you to modify a document within a container without having to
replace the document or copy it to memory. You can construct a series of steps to manipulate the
contents of a document and then apply these steps to one or many documents within a container.
It then becomes a simple matter to perform container-wide document changes.

The XmlModify object is instantiated with a call to XmlManager::createModify(). A series of
methods is exposed to provide for appending content, inserting and replacing content, and renam-
ing and removing nodes. Assume that your database is filled with documents having the following
structure:

<person>
<name>Samuel</name>
<age>51</age>

</person>

Under the <name/> element, you want to create a new attribute node called "type" with the value
"given". (You can assume that the need to add surnames to the database has been discovered.) This

CHAPTER 11 ■ BDB XML WITH PERL 173

6668ch11.qxd 7/13/06 4:42 PM Page 173

involves an append change to the document: appending to the <name/> element. Calling the
XmlModify::addAppendStep() method with the target node, the node type you are appending, and
the attribute name and value, you get the example shown in Listing 11-20.

Listing 11-20. Modifying a Document

use Sleepycat::DbXml 'simple';
use strict;

my $mgr = new XmlManager();
my $container = $mgr->openContainer("test.dbxml");
my $qcontext = $mgr->createQueryContext();
my $ucontext = $mgr->createUpdateContext();

my $modify = $mgr->createModify();
my $queryexp = $mgr->prepare("/person/name", $qcontext);

$modify->addAppendStep($queryexp, XmlModify::Attribute, "type", "given");

my $document = $container->getDocument("file14");
my $doc_value = new XmlValue($document);

$modify->execute($doc_value, $qcontext, $ucontext);

Any series of XmlModify steps can be included. Note that XmlModify is executed on an XmlValue
instead of on an XmlDocument. The execute() method also accepts an XmlResults object, enabling you
to apply the XmlModify object to all documents in a query result. Listing 11-21 performs a query for
all documents that have a /person/name element and then adds the @type="given" attribute to each.

Listing 11-21. Modifying All Documents in a Result Set

use Sleepycat::DbXml 'simple';
use strict;

my $mgr = new XmlManager();
my $container = $mgr->openContainer("test.dbxml");
my $qcontext = $mgr->createQueryContext();
my $ucontext = $mgr->createUpdateContext();

my $modify = $mgr->createModify();
my $queryexp = $mgr->prepare("/person/name", $qcontext);

$modify->addAppendStep($queryexp, XmlModify::Attribute, "type", "given");

my $results = $mgr->query("collection('test.dbxml')/person[name='Bill']",
$qcontext);

$modify->execute($results, $qcontext, $ucontext);

This code changes all documents matching the query according to the XmlModify object. Keep
in mind that it can be an expensive operation, but it is cheaper than retrieving and replacing each
pertinent document in the container. The API reference in Appendix B contains a description of all
XmlModify methods.

CHAPTER 11 ■ BDB XML WITH PERL174

6668ch11.qxd 7/13/06 4:42 PM Page 174

Conclusion
The BDB XML Perl API is straightforward and comprehensive, and this chapter provided a brief
tutorial of its basic functionality. Appendix B contains a complete API reference for Perl and other
languages, and the C++ API has additional information on usage and behavior of various API classes
and methods.

More information about the BDB XML API is available from the man pages (perldoc) that
accompany each Perl module and at the following links:

• Berkeley DB XML website: http://www.sleepycat.com

• Sleepycat BDB XML mailing list: xml@sleepycat.com (details at http://dev.sleepycat.com/
community/discussion.html)

CHAPTER 11 ■ BDB XML WITH PERL 175

6668ch11.qxd 7/13/06 4:42 PM Page 175

6668ch11.qxd 7/13/06 4:42 PM Page 176

BDB XML with PHP

The BDB XML package includes a comprehensive PHP API, exposing most of the classes and
methods of the C++ API. This chapter explains the basic functionality of the API with PHP examples.
Please refer to Chapter 8, “BDB XML with C++,” and Appendix B, “BDB XML API Reference,” for addi-
tional details on API functionality. The examples in this chapter omit the surrounding <?php ... ?>
code tags for brevity.

Running Applications
Having successfully built the BDB XML and PHP interface, the API can be loaded via the php.ini file
as follows:

extension=db4.so
extension=dbxml.so

The BDB XML PHP shared object must be linked against the libraries included with the BDB
XML distribution, although most PHP installations use the system libraries instead. Refer to the
README file in the PHP source directory (dbxml/src/php/) for details on PHP configuration. The
PHP examples included with the BDB XML distribution are located in the directory dbxml/src/
php/examples/ and demonstrate most of the PHP API functionality.

Class Organization
The PHP API follows the same class organization as the C++ API, but does not require that any
namespace declaration be present. Loading extensions from the initialization file (php.ini) handles
class imports under PHP.

The major API classes are listed in Table 12-1 in their construction (not inheritance) hierarchy,
indicating which class objects provide methods to construct other objects. Omitted are minor
classes.

Table 12-1. Major BDB XML PHP Classes

Class Name Description

XmlManager The main application class. Used to create, open, and maintain
containers, execute queries; and create other BDB XML objects (as
factory objects).

XmlContainer A container handle with methods for managing documents,
manipulating indexes, and so on.

Continued

177

C H A P T E R 1 2

6668ch12.qxd 7/14/06 2:45 PM Page 177

Table 12-1. Continues

Class Name Description

XmlIndexSpecification An interface to programmatically manage the indexes for a
container.

XmlDocument A document within a container, with methods for getting and
managing content.

XmlResults Encapsulates the results of a query or lookup operation; a sequence
of XmlValue objects.

XmlModify A programmatic interface to modify documents using stepped
changes.

XmlQueryContext Encapsulates the namespaces, variable bindings, and flags for use
with container queries.

XmlUpdateContext Encapsulates the context for updates to a container; used by all
functions that modify a container.

XmlQueryExpression A parsed/prepared XQuery expression.

XmlTransaction The BDB XML transaction object.

XmlValue Used to store XML node values when retrieving and storing data.

Db4Env A Berkeley DB class for managing a database environment.

Environments
Environments provide logging, locking, and transaction support for database containers. As with
the other interfaces, PHP documents can manage environments by using the XmlManager class.
Environments are not specific to BDB XML, which is why there is no “XML” in the class used to
manage them; Db4Env is used by Berkeley DB and (by association) Berkeley DB XML applications.

The Db4Env class provides many ways to configure a database environment. This section dis-
cusses instantiation as well as opening and closing environments. A reference for Db4Env is provided
in Appendix B.

■Note The PHP database environment object does not provide all the methods of the underlying C++ API,
including set methods for configuration. Environment configuration using PHP usually requires the use of a
DB_CONFIG file, as described in the database documentation.

The Db4Env::open() method takes a directory path, a bitwise OR’d set of environment flags, and
a Unix file mode (ignored on Windows) as arguments. This object is then passed to the XmlManager
constructor. Listing 12-1 demonstrates opening a database environment with a standard set of flags
and instantiating an XmlManager object using the environment handle.

Listing 12-1. Opening a Database Environment

$env = new Db4Env();
$env->open("myenv/", DB_CREATE|DB_INIT_LOCK|DB_INIT_LOG|DB_INIT_MPOOL|DB_INIT_TXN, 0);
$mgr = new XmlManager($env, 0);

An environment is closed automatically (along with manager objects) when its object passes
out of scope. It can also be closed explicitly using the Db4Env::close() method.

CHAPTER 12 ■ BDB XML WITH PHP178

6668ch12.qxd 7/14/06 2:45 PM Page 178

■Caution Unlike the other BDB XML APIs, the PHP API defaults to using transactions. In Listing 12-1, if the
open() method were called with no flags, the same flags would be used as the default. Explicit flags must be
passed using the PHP API to not enable transactions for the session.

XmlManager
XmlManager functions create, open, rename, and delete containers; create document and context
objects; and prepare and execute XQuery queries.

Instantiating XmlManager Objects
XmlManager objects are created with their constructor and are destroyed using their destructor
or passing them out of scope. If you provide a Db4Env object to the constructor, as just demon-
strated, XmlManager automatically closes and destroys that Db4Env object for you if you set the
DBXML_ADOPT_DBENV flag at instantiation time. If you do not provide a Db4Env object to the XmlManager
constructor, it automatically creates an environment for you. This latter option carries some con-
straints with it because you do not have the ability to configure subsystems and you must tell
XmlManager where to create and open your containers. It is usually preferable to create your own
Db4Env object and pass it to the XmlManager constructor. Listing 12-1 showed the creation of an
XmlManager object using an opened Db4Env object.

Managing Containers
Container creation, opening, renaming, and deletion are all performed with the XmlManager object.
Open and create operations share a list of container flags, detailed in Appendix B. A container is
opened using the, XmlManager::openContainer() method, and a single container can be opened
multiple times within your application. The createContainer() method creates and subsequently
opens a container. Containers are closed by allowing the container handle to go out of scope.

Listing 12-2 demonstrates a simple container creation. This example and subsequent code
examples tend to omit the environment instantiation for the sake of brevity, although Db4Env would
normally be used.

Listing 12-2. Creating a Container

$mgr = new XmlManager();
$mgr->createContainer("test.dbxml");

Listing 12-3 shows creates a container by using some of the possible arguments to
createContainer(), including flags to enable transactions for the container and perform valida-
tion (and also a container type).

Listing 12-3. Creating a Container with Flags and a Container Type

$env = new Db4Env;
$env->open("myenv/",

DB_CREATE| DB_INIT_LOCK| DB_INIT_LOG|
DB_INIT_MPOOL| DB_INIT_TXN, 0);
// default flags, so none could be used instead

CHAPTER 12 ■ BDB XML WITH PHP 179

6668ch12.qxd 7/14/06 2:45 PM Page 179

$mgr = new XmlManager($env, 0);
$container = $mgr->createContainer("test.dbxml",

DBXML_TRANSACTIONAL| DBXML_ALLOW_VALIDATION,
XmlContainer::NodeContainer);

Opening an, already-created container uses an identical syntax with the
XmlManager::openContainer() method. The same arguments and flags as createContainer() are
accepted, but some have no use unless the DB_CREATE flag is used with the call to openContainer().
For example, a container type cannot be set on an already-created container, and DB_EXCL (to throw
an error if a container exists) is relevant only when creating a new container.

■Caution It’s a good idea to unset() document objects before closing containers—and always before
deleting/renaming them—even if the PHP API tries hard to know when object destruction is needed.

Renaming and deleting containers is performed using the XmlManager::renameContainer() and
XmlManager::removeContainer() methods. Both will succeed only on unopened containers. The first
takes two string arguments: the current name of the container and the new name. The second sim-
ply takes the name of the container to remove. Both take an optional transaction object as the first
argument. Listing 12-4 demonstrates both.

Listing 12-4. Renaming and Deleting Containers

$mgr = new XmlManager();
$mgr->renameContainer("test.dbxml", "old-test.dbxml");
$mgr->removeContainer("backup-test.dbxml");

Loading Documents
Documents are usually loaded into a container directly by using XmlManager to create an input
stream. This process enables files to be loaded as a string object, from a file on disk, from a network
URL, from a memory buffer, or from standard input. Note that no validation is performed on input
streams by BDB XML; only when a document is put into a container does the system read from the
stream, parse the content, and validate it. No errors are thrown when an input stream is created
using an invalid location, filename, or so on until the put operation is performed.

XmlManager provides several methods for creating these input streams, as listed in Table 12-2.
All these methods return an object of class XmlInputStream, which is then used to load the docu-
ment into the container (or into a document object, as will be shown).

Table 12-2. XmlManager Input Stream-Creation Methods

Method Description

XmlManager::createLocalFileInputStream() Takes as its argument a filename

XmlManager::createURLInputStream() Takes as arguments three URL IDs

XmlManager::createMemBufInputStream() Takes as arguments memory address and byte
counts

The XmlInputStream object resulting from any of these methods is then used in one of two
ways. Most often, it is passed to the XmlContainer::putDocument() method, which loads the data
using the input stream, parses the document and performs any necessary validation, and then

CHAPTER 12 ■ BDB XML WITH PHP180

6668ch12.qxd 7/14/06 2:45 PM Page 180

stores the document in the container. The immediacy depends on whether or not a transaction is
used. Of course, putDocument() will also accept an XML document in the form of a string, but the
BDB XML input stream can save the overhead in memory of loading the text via PHP as well.
Listing 12-5 loads a document into a container using a local file input stream.

Listing 12-5. Adding a Document to a Container from a Local File

$mgr = new XmlManager();
$container = $mgr->openContainer("test.dbxml");
$xmlinput = $mgr->createLocalFileInputStream("file14.xml");
$container->putDocument("file14", $xmlinput);

Note that the filename specified for the input stream is different from the document name
supplied to putDocument(). (They could be the same, of course.)

An alternative to passing the XmlInputStream object to putDocument() is to supply it as an argu-
ment to the XmlDocument::setContentAsXmlInputStream() method, directly setting the content of
an in-memory document object. The XmlDocument object in question could have been created afresh
via a call to XmlManager::createDocument() (or with new XmlDocument(), in which case it does not yet
exist in the container) or having been retrieved from a container with
XmlContainer::getDocument(). Finally, an XmlDocument object can be retrieved after a query by using
the methods of the XmlResults class. Each technique is demonstrated elsewhere. See the later sec-
tions on managing documents for more details and examples of using the described input streams.
The next section discusses the XmlContainer class in more depth.

Preparing and Executing Queries
XQuery queries are performed on containers using the XmlManager object’s prepare() and query()
methods. Because queries can span multiple containers, they are not centric to any one container.
So XmlManager is the logical class for queries to take place.

The XmlManager::prepare() method takes an XQuery expression string and a query context
object as arguments and then returns an XmlQueryExpression object. This object encapsulates
the parsed and optimized XQuery expression for repeated use in multiple operations. Calling its
execute() method evaluates the expression against the containers (or documents) referred to by
the query.

The XmlQueryContext object indicates to the query engine the context within which to perform
a query. This context includes the namespace mappings, variable bindings, and flags to indicate
how a query is to be performed and its results returned—everything the query engine needs to do
its job, given the query string.

Listing 12-6 shows the creation of an XmlQueryContext object, using it to set a default collection
(enabling you to omit the argument to collection() from the query), and then preparing and exe-
cuting a query.

Listing 12-6. Using XmlQueryContext

$mgr = new XmlManager();
$query = "collection()/person[name='Bob']";

$container = $mgr->openContainer("test.dbxml");
$qcontext = $mgr->createQueryContext();
$qcontext->setDefaultCollection("test.dbxml");

$query_exp = $mgr->prepare($query, $qcontext);
$results = $query_exp->execute($qcontext);

CHAPTER 12 ■ BDB XML WITH PHP 181

6668ch12.qxd 7/14/06 2:45 PM Page 181

If your XML collection made use of namespaces, you would use the XmlQueryContext object to
define them. Imagine that your top-level document elements looked like this instead of <person/>:

<people:person xmlns:wordnet="http://brians.org/people">

You could now use the namespace in your query. Listing 12-7 maps this namespace to the
people prefix and sets a variable for use in the XQuery query.

Listing 12-7. Declaring Namespaces and Variables

$mgr = new XmlManager();
$query = "collection('test.dbxml')/people:person[name='\$name']";

$container = $mgr->openContainer("test.dbxml");
$qcontext = $mgr->createQueryContext();
$qcontext->setNamespace("people", "http://brians.org/people/");
$qcontext->setVariableValue("name", new XmlValue("Bob"));

$query_exp = $mgr->prepare($query, $qcontext);
$results = $query_exp->execute($qcontext);

Because the XmlQueryContext object is passed to execute() for a prepared query expression, the
context can be manipulated without having to recompile the query expression. In Listing 12-7, the
query variable $name (the XQuery variable, not the PHP variable) was changed, and the query was
reissued without recompiling the prepared query expression.

BDB XML also allows for queries to be executed in a one-off fashion, without query preparation,
which is helpful when you know that queries will not be used repeatedly. Listing 12-8 demonstrates
using the XmlManager query() method to execute a query only once.

Listing 12-8. Performing a One-Off Query

$mgr = new XmlManager();
$query = "collection('test.dbxml')/person[name='Jim']";
$container = $mgr->openContainer("test.dbxml");
$results = $mgr->query($query, $qcontext);

Besides namespaces and variables, XmlQueryContext can determine how queries are executed
and the values they return. The setEvaluationType() method allows for two evaluation types: eager
and lazy (see Table 12-3).

Table 12-3. Query Evaluation Types

Type Description

XmlQueryContext_Eager The query is executed, with resulting values determined and stored in
memory before the query returns. This is the default.

XmlQueryContext_Lazy The query is executed, but the resulting values are not determined or
stored in memory until the API refers to them by iterating the result set.
This type is useful for queries with large result sets because it consumes
less memory and enables the first result to be retrieved more quickly.

Listing 12-9 demonstrates setting the evaluation type to lazy.

CHAPTER 12 ■ BDB XML WITH PHP182

6668ch12.qxd 7/14/06 2:45 PM Page 182

Listing 12-9. Querying with Lazy Evaluation

$mgr = new XmlManager();
$query = "collection('test.dbxml')/person[name='Jim']";

$container = $mgr->openContainer("test.dbxml");
$qcontext = $mgr->createQueryContext();
$qcontext->setEvaluationType(XmlQueryContext_Lazy);

$results = $mgr->query($query, $qcontext);

Because this example does not iterate the query results, no values are actually retrieved
because the evaluation type was set to lazy. In the next section, which demonstrates retrieving
results, lazy evaluation returns the first result as soon as possible and retrieves subsequent results
on demand.

Using Query Results
The XmlQueryExpression::execute() and XmlManager::query() methods return objects of class
XmlResults, which are used to iterate the result set. The object is a sequence of XmlValue objects (or
an on-demand result iterator in the case of lazy evaluation) that in turn represent any of the BDB
XML supported data types. The XmlResults class uses an iteration interface with the next() and
previous() methods to navigate results. Each returns an XmlValue containing the next or previous
result (although previous() is unavailable with lazily evaluated queries). Listing 12-10 demonstrates
outputting the results of a query to STDOUT.

Listing 12-10. Retrieving Query Results

$mgr = new XmlManager();
$query = "collection('test.dbxml')//Word";

$container = $mgr->openContainer("test.dbxml");
$qcontext = $mgr->createQueryContext();
$results = $mgr->query($query, $qcontext);

while ($results->hasNext()) {
$value = $results->next();
$document = $value->asDocument();
$name = $document->getName();
$content = $value->asString();
print $name . ": " . $content . "\n";

}

Note the use of several new methods, including XmlValue::asString() and
XmlDocument::getName(). Certain pieces of document information, including its name within the con-
tainer, are available only by querying directly or retrieving the result as a document. When your queries
require the node values instead of the documents matching a query, asString() is all you need.

The XmlValue class also provides a Document Object Model (DOM)–like interface to not only
retrieve values (as with the asString() and asDocument() methods) but also to navigate the nodes it
represents. Its methods include getNextSibling(), getAttributes(), and getFirstChild(), making
it useful for any post-query processing that you might need to perform on query results.

The BDB XML query engine is capable of evaluating XQuery queries on documents (and even
on individual query results) in addition to database containers. Listing 12-11 does exactly this by
executing several queries by using the XmlValue object. Because the document query will repeat for
each result, it makes sense to prepare it by using an XmlQueryExpression object.

CHAPTER 12 ■ BDB XML WITH PHP 183

6668ch12.qxd 7/14/06 2:45 PM Page 183

Listing 12-11. Querying Results

$mgr = new XmlManager();
$query = "collection('test.dbxml')/person[name='Fred']";
$subquery = "/person/phone";

$container = $mgr->openContainer("test.dbxml");
$qcontext = $mgr->createQueryContext();
$phoneqcontext = $mgr->createQueryContext();

$results = $mgr->query($query, $qcontext);
$phonequery = $mgr->prepare($subquery, $phoneqcontext);

while ($results->hasNext()) {
$value = $results->next();
$phoneresults = $phonequery->execute($value, $phoneqcontext);
while ($phoneresults->hasNext()) {

$phonevalue = $phoneresults->next();
print $phonevalue->asString() . "\n";

}
}

The same process can be performed with the XmlDocument object resulting from a call to
XmlValue::asDocument(), passing that object as argument to XmlQueryExpression::execute(). Of
course, if you anticipate only one <phone/> element in this example, you can just call XmlResults::
next() instead of creating a while block.

You used different XmlQueryContext objects for the query and the subquery in this example.
Although you could use the same query context, it might not be a safe operation in all cases (for
example, when the main query is lazily evaluated).

The second query in this example could be relative to the result node by using the current node
(.) instead:

./phone/string()

This same technique of querying results and documents can be useful for pulling data out of
large documents, enabling you to work within the context of previous result sets. A later section
looks more closely at the use of XmlDocument to demonstrate the retrieval of metadata.

Creating Other Objects
Most of the remaining XmlManager methods serve to simply construct objects of other DbXml subclasses.
Many of them have already been demonstrated (for example, the XmlManager::createTransaction()
method, which instantiates an XmlTransaction object). All such method names begin with create
and most take no default arguments, serving as basic constructors. They include createDocument()
to instantiate an XmlDocument object, createIndexLookup() to instantiate an XmlIndexLookup object,
createModify() to instantiate an XmlModify object, createQueryContext() to instantiate an
XmlQueryContext object, and createResults() to create an empty XmlResults object. These meth-
ods are examined in the following sections, in which their returned objects are demonstrated.

CHAPTER 12 ■ BDB XML WITH PHP184

6668ch12.qxd 7/14/06 2:45 PM Page 184

Using XmlContainer
The XmlContainer class provides most of the functionality that concerns a container and its contents,
including adding, replacing, updating, and deleting documents; directly retrieving documents (using
the getDocument() method); and managing indexes for the container.

An XmlContainer object is created by using the XmlManager::createContainer() and XmlManager::
openContainer() methods. Documents can be added using the putDocument() method, taking as argu-
ment either an XmlDocument or XmlInputStream. The previous section demonstrated it while supplying
a document name and input stream or document container. The method will also accept an XML
string (and will generate document names if not provided) if the call supplies the DBXML_GEN_NAME
flag. Listing 12-12 uses putDocument() without providing a document name.

Listing 12-12. Letting BDB XML Generate Document Names

$mgr = new XmlManager();
$container = $mgr->openContainer("test.dbxml");
$ucontext = $mgr->createUpdateContext();

$content = "<person><name>Bob</name></person>";
$container->putDocument("", $content, $ucontext, DBXML_GEN_NAME);

With this usage, BDB XML guarantees the uniqueness of document names, incrementing them
with each put document.

Documents are deleted from a container by using the XmlContainer::deleteDocument() method,
which accepts with the document name or document object as its argument. The latter is useful
when you want to iterate over a result set, deleting each document it contains, without having to
retrieve the document name. Deleting documents is demonstrated in Listing 12-13.

Listing 12-13. Deleting Documents

$mgr = new XmlManager();
$container = $mgr->openContainer("test.dbxml");
$ucontext = $mgr->createUpdateContext();
$qcontext = $mgr->createQueryContext();
$content = "<person><name>Bob</name></person>";
$container->putDocument("", $content, $ucontext, DBXML_GEN_NAME);
$results = $mgr->query("collection('test.dbxml')/person[name='Bob']", $qcontext);
while ($results->hasNext()) {

$value = $results->next();
$document = $value->asDocument();
print "Deleting document: " . $document->getName() . "\n";
$container->deleteDocument($document, $ucontext);

}

Note that here an XmlDocument object is returned from each call to XmlResults::next().
When you want to replace a document in a container (instead of modifying it in place),

you can use the XmlContainer::updateDocument() method. This operation will work with any
XmlDocument object, setting its name to be identical to the document to be replaced and handing
it to the updateDocument() method. You usually retrieve the document from the database, set new
content by using the XmlDocument::setContent() method (or setContentAsXmlInputStream()),
and save it back to the container. Listing 12-14 retrieves a document from the container using
the XmlContainer::getDocument() method before replacing its content and saving it back to the
container.

CHAPTER 12 ■ BDB XML WITH PHP 185

6668ch12.qxd 7/14/06 2:45 PM Page 185

Listing 12-14. Replacing a Document

$mgr = new XmlManager();
$container = $mgr->openContainer("test.dbxml");
$ucontext = $mgr->createUpdateContext();
$newcontent = "<person><name>Bob</name></person>";
$document = $container->getDocument("file12.xml");
$document->setContent("<person><name>Bob2</name></person>");
$container->updateDocument($document, $ucontext);

The BDB XML API provides a programmatic interface to partially modifying documents using
the XmlModify class, which enables a description of changes to be built before applying them to one
or many documents in a container (this is demonstrated in the following section).

A final major function of the XmlContainer class is managing container indexes. Chapter 6,
“Indexes,” described the specifics of indexing strategies; this section discusses adding to, deleting
from, and examining indexes of the API.

You can add indexes by using an index description string, as shown in Listing 12-15.

Listing 12-15. Adding an Index to a Container with an Index Description String

$mgr = new XmlManager();
$container = $mgr->openContainer("test.dbxml");
$container->addIndex("", "person", "node-element-equality-string");

Unlike most of the BDB XML APIs, the PHP interface does not support adding indexes using
enumerated types. Given that the C++ interface’s enumerated types are deprecated, this is not a
necessary feature.

■Note Supplying update context objects is optional for most PHP API methods that accept them. When not pres-
ent, BDB XML creates and uses its own default contexts. For XmlQueryContext, the default options include eager
query evaluation, no user-defined variables of namespaces, and so on.

The XmlContainer::getIndexSpecification() method returns an index specification for the
container, encapsulating a description of all current indexes. It provides the addIndex() and
deleteIndex()methods to manipulate the index description before applying it back to the con-
tainer. The example in Listing 12-16 deletes one index and adds another using an
XmlIndexSpecification object.

Listing 12-16. Manipulating a Container’s Index Specification

$mgr = new XmlManager();
$container = $mgr->openContainer("test.dbxml");
$ucontext = $mgr->createUpdateContext();

$indexspec = $container->getIndexSpecification();
$indexspec->deleteIndex("", "person", "node-element-equality-string");
$indexspec->addIndex("", "person", "node-attribute-equality-string");
$container->setIndexSpecification($indexspec, $ucontext);

The XmlIndexSpecification object also provides methods for replacing an index, manipulating
the default indexes, and iterating through the indexes within the specification.

One more class bears mentioning in the context of containers and indexes: XmlIndexLookup.
Objects of this class are instantiated by XmlManager::createIndexLookup(),and you can retrieve all
nodes or documents that have keys in any given index (see Listing 12-17).

CHAPTER 12 ■ BDB XML WITH PHP186

6668ch12.qxd 7/14/06 2:45 PM Page 186

Listing 12-17. Listing All Documents Referenced by an Index

$mgr = new XmlManager();
$container = $mgr->openContainer("test.dbxml");
$qcontext = $mgr->createQueryContext();
$indexlookup = $mgr->createIndexLookup($container, "", "person",

"node-element-equality-string");
$results = $indexlookup->execute($qcontext);

while ($results->hasNext()) {
$value = $results->next();
my $document = $value->asDocument();
print $document->getName() . ": " . $document->getContent();

}

When a container is of type WholedocContainer, the XmlIndexLookup::execute() operation
always returns entire documents. This is also true for containers of type NodeContainer, unless the
DBXML_INDEX_NODES flag was specified at container creation time. In that case, the lookup returns the
individual nodes referred to in the index’s keys.

The XmlIndexLookup class provides further access to an index’s internal workings, enabling
equality and inequality lookups, methods to set bounds for range lookups, and the ability to set a
parent node for indexes that use edge paths rather than node paths.

Using XmlDocument
The XmlDocument class is used throughout the API primarily as a document handle, passed to and
from methods of other classes. It also provides methods for getting and setting document content,
getting document metadata, and setting a document’s name.

■Note The PHP API in BDB XML 2.2.13 is missing the setMetaData() method. A patch is available from the
BDB XML mailing list, referenced at the end of the chapter.

A document’s metadata is set with the XmlDocument::setMetaData() method. Included in the
document metadata are a name, a value, and an optional URI. Listing 12-18 demonstrates adding
metadata to a document.

Listing 12-18. Adding Metadata to a Document

$mgr = new XmlManager();
$container = $mgr->openContainer("test.dbxml");

$uri = "http://brians.org/metadata/";
$metaname = "createdOn";
$metavalue = new XmlValue(XmlValue_DATE_TIME, "2006-02-05T05:23:14");
$document = $container->getDocument("file14.xml");
$document->setMetaData($uri, $metaname, $metavalue);
$container->updateDocument($document);

■Tip You can create a DATE_TIME index on this metadata attribute to facilitate fast date lookups.

CHAPTER 12 ■ BDB XML WITH PHP 187

6668ch12.qxd 7/14/06 2:45 PM Page 187

You can retrieve metadata from an XmlDocument by using the getMetaData() method (see
Listing 12-19).

Listing 12-19. Retrieving Metadata from a Document

$mgr = new XmlManager();
$container = $mgr->openContainer("test.dbxml");
$ucontext = $mgr->createUpdateContext();

$uri = "http://brians.org/metadata/";
$metaname = "createdOn";
$metavalue = new XmlValue();

$document = $container->getDocument("file14.xml");
$metavalue = $document->getMetaData($uri, $metaname);
print "file14.xml, created on " . $metavalue->asString() . "\n";

Note that containers can contain metadata-only documents that store only metadata
key/value pairs with no XML content.

Using XmlModify
Using the XmlModify class enables you to modify a document within a container without having to
replace the document or copy it to memory. You can construct a series of steps to manipulate the
contents of a document and then apply these steps to one or many documents within a container.
It then becomes a simple matter to perform container-wide document changes.

The XmlModify object is instantiated with a call to XmlManager::createModify(). A series of
methods is exposed to provide for appending content, inserting and replacing content, and renam-
ing and removing nodes. Assume that your database is filled with documents having the following
structure:

<person>
<name>Samuel</name>
<age>51</age>

</person>

Under the <name/> element, you want to create a new attribute node called "type" with the value
"given". (You can assume that the need to add surnames to the database has been discovered.) This
process involves an append change to the document: appending to the <name/> element. Calling the
XmlModify::addAppendStep() method with the target node, the node type you are appending, and the
attribute name and value, you get the example in Listing 12-20.

Listing 12-20. Modifying a Document

$mgr = new XmlManager();
$container = $mgr->openContainer("test.dbxml");
$qcontext = $mgr->createQueryContext();
$ucontext = $mgr->createUpdateContext();
$modify = $mgr->createModify();
$queryexp = $mgr->prepare("/person/name", $qcontext);

$modify->addAppendStep($queryexp, XmlModify_Attribute, "type", "given");
$document = $container->getDocument("file14");
$doc_value = new XmlValue($document);
$modify->execute($doc_value, $qcontext, $ucontext);

CHAPTER 12 ■ BDB XML WITH PHP188

6668ch12.qxd 7/14/06 2:45 PM Page 188

Any series of XmlModify steps can be included. Note that XmlModify is executed on an XmlValue
instead of on an XmlDocument. The execute() method also accepts an XmlResults object, enabling you
to apply the XmlModify object to all documents in a query result. Listing 12-21 performs a query for
all documents that have a /person/name element and then adds the @type="given" attribute to each.

Listing 12-21. Modifying All Documents in a Result Set

$mgr = new XmlManager();
$container = $mgr->openContainer("test.dbxml");
$qcontext = $mgr->createQueryContext();
$ucontext = $mgr->createUpdateContext();
$modify = $mgr->createModify();
$queryexp = $mgr->prepare("/person/name", $qcontext);

$modify->addAppendStep($queryexp, XmlModify_Attribute, "type", "given");
$results = $mgr->query("collection('test.dbxml')/person[name='Bill']", $qcontext);
$modify->execute($results, $qcontext, $ucontext);

This code changes all documents matching the query according to the XmlModify object. Keep
in mind that this can be an expensive operation, but it is cheaper than retrieving and replacing each
pertinent document in the container. The API reference in Appendix B contains a description of
more XmlModify methods.

Conclusion
The PHP API makes the BDB XML functionality accessible to PHP. This chapter provided a brief
tutorial overview of that functionality.

Appendix B contains a reference for the PHP API (as well as other languages), and the C++ API
has additional information. The PHP examples included with the BDB XML distribution provide
an overview of functionality, and the README file in the PHP source directory summarizes the
API usage.

The following links are useful for learning more about BDB XML with PHP:

• Berkeley DB XML website; http://www.sleepycat.com

• Sleepycat BDB XML mailing list: xml@sleepycat.com (details at http://dev.sleepycat.com/
community/discussion.html)

• Db4Env PHP documentation: http://www.sleepycat.com/docs/ref/ext/php.html

• Slides from George Schlossnagle’s BDB XML on PHP OSCON presentation: http://
www.sleepycat.com/docs/ref/ext/php.html

CHAPTER 12 ■ BDB XML WITH PHP 189

6668ch12.qxd 7/14/06 2:45 PM Page 189

6668ch12.qxd 7/14/06 2:45 PM Page 190

Managing Databases

The BDB XML distribution includes several command-line utilities that implement many com-
mon database operations. These utilities provide easy interfaces to many tasks that can also be
implemented via the BDB XML API, making them useful as an API reference as well. After building
the distribution, the utilities are located in the install/bin/ directory for Unix installations and the
bin/ directory under Win32. They are described here with their options.

■Note The topic of Berkeley DB database management is a complex one; users should refer to the Sleepycat
docs on this subject (see the references at the end of this chapter) for a thorough treatment of backing up and
restoring databases.

Populating Containers
Previous examples demonstrated populating containers by using the API. Because it is an operation
that is not often repeated, a ready-made utility, dbxml_load_container, is provided for this purpose.
It takes a file list as arguments and optionally creates the specified container. Keep in mind that you
should create indexes for a container before populating it with many documents, so initial container
creation might be best left to your own program or the dbxml shell.

■Caution The dbxml_load_container utility is intended only for off-line use because it cannot share environ-
ments with other processes. Be certain that there are no processes (including the dbxml shell) with open handles
to the container. Also, because dbxml_load_container does not write transactionally, if you want the logs to
restore the container upon data loss, dump the container after loading to ensure recoverability.

The following command-line example creates the node-type container people.dbxml in the
environment located at ./project-db/ and populates it with the *.xml files in the current working
directory.

$ dbxml_load_container -h ./project-db/ -c people.dbxml -s node *.xml

adding: 12.xml
adding: 13.xml
...
adding: 52.xml

191

C H A P T E R 1 3

6668ch13.qxd 7/14/06 2:50 PM Page 191

Options for the dbxml_load_container utility are listed in Table 13-1.

Table 13-1. Abbreviated Options for the dbxml_load_container Utility

Option Description

-h Specifies the environment directory; the current working directory is the default. The
directory must exist.

-c Specifies the container name. If the named file doesn’t exist, it will be created.

-s Specifies the type for the container: node (the default and preferred type) or wholedoc.
See Chapter 5, “Environments, Containers, and Documents,” for details on container
types.

-f Specifies a file containing a list of XML files to load into the container. This option is
useful when a list already exists or is preferred to a file list on the command line.

-p When the -f option is provided, this option specifies a path prefix to prepend to the
file list.

Dumping Containers
BDB XML provides two command-line utilities for dumping the contents of a container as text:
db_dump and dbxml_dump. Both utilities output to standard output (or a file when specified) portable
flat-text data (not XML), which restore a container when supplied to db_load or dbxml_load, respec-
tively. The dumped output of db_dump includes container indexes; the dbxml_dump output does not,
making the resulting file much smaller. The output of the two dump utilities is not mutually com-
patible; db_dump provides lower-level options and can be used with both standard Berkeley DB
databases and BDB XML containers, whereas dbxml_load provides the necessary options to work
specifically with BDB XML containers. Because BDB XML uses Berkeley DB databases in ways not
necessarily exposed to the user, some of the db_dump functions—such as listing databases in a data-
base file and dumping individual records by number—are not particularly useful to BDB XML
containers.

■Caution To avoid corrupt output, this utility should be used only when other processes are not modifying the
containers being dumped. It should also always be allowed to exit gracefully to detach from the container being
dumped. Sending an interrupt signal (SIGINT) causes a clean exit to occur.

This example dumps the container we just created to file dump-1:

$ dbxml_dump -h project-db/ -f dump1 people.dbxml

The resulting file can be used with dbxml_load to restore a container to the state at which it was
dumped.

The options for dbxml_dump are provided in Table 13-2. Refer to the Berkeley DB documentation
if you require the lower-level functions of db_dump.

CHAPTER 13 ■ MANAGING DATABASES192

6668ch13.qxd 7/14/06 2:50 PM Page 192

Table 13-2. Abbreviated Options for the dbxml_dump Utility

Option Description

-h Specifies the environment directory; the current working directory is the default.
The directory must exist.

-f Specifies the file to write the dump. Otherwise, the database will be dumped to
standard output.

-r Causes the utility to salvage data from a possibly corrupt file.

-R Operates as -r, but aggressively salvages data—all possible data from the file is
returned, including deleted data. The resulting dump will probably not be loadable
without editing.

Loading Containers
The dbxml_load utility reads the format output by dbxml_dump and loads it into a specified container.
When loading to an existing container, it will output keys that already exist in the container, not
overwrite them, and the process will exit with a status of 1. It is strongly recommended that you not
use dbxml_load with existing containers; delete a container prior to performing a load. The follow-
ing example loads the file dumped in the previous example:

$ dbxml_load -h project-db/ -f dump1 people.dbxml

The options for dbxml_load are listed in Table 13-3.

Table 13-3. Abbreviated Options for the dbxml_load Utility

Option Description

-h Specifies the environment directory; the current working directory is the default. The
directory must exist.

-f Specifies the file from which to load. Otherwise, data will be read from standard
input.

Managing Logs
For environments and containers with logging and transactions enabled, BDB XML provides utilities
to read logs and determine when to remove them. The db_printlog program prints log information
in a human-readable format that can be used to identify all operations belonging to a particular
transaction.

■Note An in-depth discussion of db_printlog is out of the scope of this book; please refer to the Berkeley DB
documentation for details.

Many log files will accumulate for environments that use transactions. The db_archive utility
tells you which are no longer in use (that is, no longer involved in active transactions). These log
files can be deleted to save disk space, but recovery of an environment in the case of catastrophic

CHAPTER 13 ■ MANAGING DATABASES 193

6668ch13.qxd 7/14/06 2:50 PM Page 193

failure is not possible without all logs for the life of the environment. Therefore, it is recommended
that you back up old log files if complete recovery is potentially necessary.

The following example lists “old” log files for our environment:

$ db_archive -h project-db/

The options for db_archive are listed in Table 13-4.

Table 13-4. Abbreviated Options for the db_archive Utility

Option Description

-h Specifies the environment directory; the current working directory is the default.

-a Causes the utility to output absolute pathnames.

-d Removes the inactive log files automatically.

-l Prints pathnames of all log files, regardless of whether they are involved in active
transactions.

-v Verbose mode; lists the checkpoints in the log files as they are reviewed.

-s Prints pathnames of all database files that need to be archived to guarantee recovery
resulting from catastrophic failure.

Detecting Deadlocks
A deadlock occurs when concurrent threads or processes compete for the same resource, as well
as when multiple locks are requested within a single-threaded BDB XML application (called a self-
deadlock). The latter is an application bug (or, less often, a BDB XML bug), for which the only
symptom is a hanging process.

BDB XML provides the db_deadlock utility to be run either as a daemon process or called regu-
larly by another process when multiple threads or processes access and modify a database. The
utility aborts lock requests when it detects a deadlock.

■Note Like other utilities, db_deadlock uses underlying Berkeley DB and BDB XML APIs; in this case, it uses
DB_ENV->lock_detect(). Applications should plan to perform their own lock detection and take appropriate action.

The options for db_deadlock are listed in Table 13-5.

Table 13-5. Abbreviated Options for the db_deadlock Utility

Option Description

-h Specifies the environment directory; the current working directory is the default.

-a Specifies the action to take when a deadlock is detected. For example, an m value will
abort the locker with the most locks, o will abort the locker with the oldest lock, and e
will abort any lock request that has timed out.

-L Logs the utility output to the specified file in the following format: db_deadlock:
[process ID] [date].

-t Causes an environment to check every specified number of seconds/microseconds;
a review is forced when a process has been forced to wait for a lock.

CHAPTER 13 ■ MANAGING DATABASES194

6668ch13.qxd 7/14/06 2:50 PM Page 194

Option Description

-v Verbose mode; messages are printed when the detector runs.

-s Prints pathnames of all database files that need to be archived to guarantee recovery
resulting from catastrophic failure.

Checkpointing Transactions
Another (optional) daemon utility, db_checkpoint, monitors database logs and performs automatic
checkpointing. (It also uses the underlying API, DB_ENV->txn_checkpoint(), as your own BDB XML
applications do.) Checkpointing flushes the database’s memory pool, writes a checkpoint record to
the log, and flushes the log. The following example checkpoints the logs for the environment once
and then exits:

$ db_checkpoint -h ./project-db/ -1

Table 13-6 contains some of the options for db_checkpoint.

Table 13-6. Abbreviated Options for the db_checkpoint Utility

Option Description

-h Specifies the environment directory; the current working directory is the default.

-1 Checkpoints the log once and then exits.

-L Logs the utility output to the specified file in this format: db_checkpoint: [process
ID] [date].

-k Checkpoints the database when the specified number of kilobytes of log file are
written.

-v Verbose mode; messages are printed when the detector runs.

-p Checkpoints the database at least as often as the specified number of minutes.

Recovery
Whenever an unexpected event—system failure, application crash, and so on—leaves a database
in an unknown state, the db_recover utility should be run to bring the database to a known (stable)
state. Any transactions committed before the event are guaranteed to be consistent, and uncom-
mitted transactions are undone. Recovery is possible only if log files exist for the given database.

The options for db_recover are shown in Table 13-7.

Table 13-7. Abbreviated Options for the db_recover Utility

Option Description

-h Specifies the environment directory; the current working directory is the default.

-c Performs a catastrophic recovery instead of a normal recovery.

-t Recovers to a time (instead of the current date) specified in the form [CC[YY]]MMDDhhmm[.SS].

-v Verbose mode.

CHAPTER 13 ■ MANAGING DATABASES 195

6668ch13.qxd 7/14/06 2:50 PM Page 195

Debugging Databases
Status and statistics checks can be performed on databases by using the db_verify and db_stat
utilities.

The db_verify command (and its corresponding DB->verify() API method) opens a database
file and verifies the integrity of its contents, including sort ordering. It also takes the -h option and
a list of one or more database files.

The db_stat utility (which uses the API methods DB->stat(), DB_ENV->lock_stat(),
DB_ENV->log_stat(), and DB_ENV->txn_stat()) outputs useful statistics for an environment,
including locking statistics, subsystem configuration for the environment, and cache statistics.
For example, use the following to see log statistics for the environment:

$ db_stat -h ./project-db/ -l

10 Log version number
32KB Log record cache size
0660 Log file mode
10Mb Current log file size
...
1 Current log file number
7295 Current log file offset
1 On-disk log file number
7295 On-disk log file offset
0 Maximum commits in a log flush
0 Minimum commits in a log flush
96KB Log region size
0 The number of region locks that required waiting (0%)

The options for db_stat are listed in Table 13-8.

Table 13-8. Abbreviated Options for the db_stat Utility

Option Description

-h Specifies the environment directory; the current working directory is the default.

-c Displays locking subsystem statistics.

-d Displays database statistics for the specified file.

-e Displays database environment information, including configured subsystems.

-l Displays logging subsystem statistics.

-t Displays transaction subsystem statistics.

-m Displays cache statistics.

-z Resets the statistics after reporting them.

Backup and Restore
This section provides a brief and relatively safe overview of backing up and restoring BDB XML
databases. Refer to the Berkeley DB documentation for more details.

A standard backup requires that database writes be discontinued during a backup (reads can
continue). A hot backup enables database reads and writes to continue, but generates more data.

CHAPTER 13 ■ MANAGING DATABASES196

6668ch13.qxd 7/14/06 2:50 PM Page 196

It is a duration snapshot; it covers the space of time required to make the backup and is not a true
point in time snapshot of the database, as with standard backups. A standard backup entails the
following steps:

1. Commit (or abort) all open transactions and stop writes (all filesystem operations) to the
database. Reads can continue.

2. Perform an environment checkpoint using the db_checkpoint utility (described previously)
or its corresponding DB_ENV->txn_checkpoint() API method.

3. Copy all data files to a backup device. This is the output of db_archive -s.

4. Copy the last log file to a backup device. This is the highest-numbered log output by
db_archive -l.

A hot backup has many of the same steps, but instead enables writes to continue and does not
require an environment checkpoint. The major difference is that the database data files must be
copied sensitive to database pages, and all log files (those in use) must be archived after the data
files. Refer to the Berkeley DB documentation for details on hot backups, page atomicity, and data-
base recoverability. Note, too, that the Berkeley DB distribution (but not the BDB XML distribution)
includes an example utility: db_hotbackup.

When an environment snapshot is sufficient for database recovery, simply removing the existing
environment directory and re-creating it with the backed-up data and log files is usually sufficient.
When data recovery is required because of a failure, the db_recover utility should be used.

Conclusion
Berkeley DB XML provides many tools via its APIs and command-line utilities to manage your data-
bases. Please refer to the following documentation for more details on database maintenance:

• The Berkeley DB reference guide, with manuals on deadlocking, transactional granularity and
logging, and recovery procedures, as well as the related APIs: http://www.sleepycat.com/
docs/ref/toc.html.

• Manuals for the BDB XML command-line utilities: http://www.sleepycat.com/xmldocs/
utility/index.html.

CHAPTER 13 ■ MANAGING DATABASES 197

6668ch13.qxd 7/14/06 2:50 PM Page 197

6668ch13.qxd 7/14/06 2:50 PM Page 198

XML Essentials

Most XML tutorials focus on the XML itself—its syntax and rules. These subjects will be covered
here, of course, but beginners can best understand XML with a focus on the data. This chapter will
not only explain the “why” and “how” of XML (assuming that you have no previous XML experi-
ence) but also provide sufficient information for you to begin working with BDB XML.

It’s About the Data
A common misunderstanding about XML is that it is a markup language. Although this is a true
statement, the classification implies that XML is similar to HTML or is somehow an outgrowth of it.
Although XML can be used like HTML to mark up documents, indicate formatting rules, and so on,
these usages are just a few of many. The real purpose of XML is to describe data. In this way, it isn’t
so different from other data formats. Consider the case of the typical comma-delimited list (they are
often called comma separated values [CSV]):

Brown, Jim, 24, 612-323-0091, Minneapolis, MN, male
Thompson, Sarah, 51,,,, female
Jackson, Jeremy, 31,, Salt Lake City, UT, male
Jones, Sue, 19, 313-555-1123, San Jose, CA, female
Carter, Frank,, 800-555-1123,,, male

Other examples include tab-delimited and space-delimited data (for instance, the Wordnet
example in Chapter 2, “The Power of an Embedded XML Database”). Data formats such as these
are usually used when dumping data from actual databases. With read-only databases such as
Wordnet, however, they are sometimes used in production.

■Note XHTML—the strict specification for HTML—is a dialect of XML. XML can express blocks and styles of
text as well as define its own organization.

Humans can gather the meaning of fields from their contents: the first field is most likely a sur-
name; the second is probably a given name; following fields might contain age, phone number, city,
state, and gender. Of course, any program that has to interpret this data needs identifiers for each
field, which can sometimes occur at the top of the file in the field of table field names:

Last name, First name, Age, Phone, City, State, Sex

A script or application can now parse this file, understand what each field means, and then do
something with the data. Blank values are left empty, indicating that the information is not available.

199

A P P E N D I X A

6668appa.qxd 7/14/06 4:21 PM Page 199

If you have used a comma- or tab-delimited format extensively, you know that certain text
must be escaped. Values with commas break the formatting, which can lead to conditions that
require special rules. Values with commas are required to be contained in double quotes. Picture
a field that lists hobbies, like so:

Brown, Jim, 24, 612-323-0091, Minneapolis, MN, male, "sports, boats, carpentry"

One solution is to create a field for each hobby; you embedded a CSV row into a value instead.
What if one of the values contains double quotes? You have to replace the quotes in the value with
two consecutive double quotes and include the value itself in double quotes:

Brown, """Big"" Jim", 24, 612-323-0091, Minneapolis, MN, male, "sports, boats, carpentry"

And because your CSV file uses line breaks to separate the records themselves, adding a field
for a street address and a value with a line break also requires double quotes:

Brown, """Big"" Jim", 24, 612-323-0091, "Attn: Jim Brown
Pleax Systems, Inc.
18520 25th Ave
",Minneapolis, MN, male, "sports, boats, carpentry"

It’s easy to see how such a format can grow unwieldy, but the rules are necessary to keep the
format machine-interpretable.

Going back to the original CSV example, a novice translation of this data to an XML format
might look something like this (abbreviated to only the first record):

<list>
<entry>

<field>
<name>Last name</name>
<value>Brown</value>

</field>
<field>

<name>First name</name>
<value>Jim</value>

</field>
<field>

<name>Age</name>
<value>24</value>

</field>
<field>

<name>Phone</name>
<value>612-323-0091</value>

</field>
<field>

<name>City</name>
<value>Minneapolis</value>

</field>
<field>

<name>State</name>
<value>MN</value>

</field>
<field>

<name>Sex</name>
<value>male</value>

</field>
</entry>

</list>

APPENDIX A ■ XML ESSENTIALS200

6668appa.qxd 7/14/06 4:21 PM Page 200

XML documents typically have the extension .xml, so this document can be called list.xml. In
the example, a person has attempted to describe the CSV data in XML. The bold text indicates XML
values. A novice might look at this example and comment on how long or redundant the XML is
when compared with the CSV: “What a waste of space!” Of course, there is a better way to use XML.

The phrase semantically rich is frequently used in connection with XML. XML is a self-defining
markup language, so you are essentially free to invent your own format. The best tags—the names
in the brackets (< >)—are those that describe the data itself.

Recall that the novice document example was given the name list.xml. This seems a poor choice
for a filename because a person seeing the file would have no idea about the nature of its contents; a
better name might be people.xml.

This problem also occurs with the tag names. Consider the tags to take the place of the field
names at the top of the CSV document. This would give you an XML translation closer to the follow-
ing (note that the XML values are still bold):

<people>
<person>

<lastname>Brown</lastname>
<firstname>Jim</firstname>
<age>24</age>
<phone>612-323-0091</phone>
<city>Minneapolis</city>
<state>MN</state>
<sex>male</sex>

</person>
</people>

The field names have moved into tags. The outermost tag is called people because this docu-
ment supposedly contains a list of people. You can tell what any given value means, even if the value
itself is ambiguous, without looking at the top of the file for field names or counting commas in a
CSV file. Tag names, called elements in XML, are similar in this example to relational database (RDB)
field names in tables. XML is a semantically rich data format because each value has complete iden-
tification—its meaning is clear without reference to tables or remote sources. Editing this record
manually is simply a matter of editing a file and then replacing or adding the elements and values
that you want. Semantically rich formats provide readability for humans, editability for humans and
programs, and self-contained meaning throughout the document. Although this format requires a
longer file than others (the CSV example, for instance), it brings a dramatic increase in usability. The
extra bytes are a small price to pay for context: with XML, data has “inline meaning.”

A single XML file can contain an entire database, or individual records can be stored in many
XML files. (This is where BDB XML will come into play.) What might be considered a single record
or row in an RDB can be treated as a single file. Individual records can contain hierarchical data all
their own. Suppose that you want to add a list of hobbies to your record, permit multiple phone
numbers, and enable the addition of a middle name or name prefix. You could change the XML to
read as follows:

<person>
<name>

<last>Brown</last>
<first>Jim</first>
<middle>Austin</middle>

</name>
<age>24</age>
<phone>

<office>612-323-0091</office>
<home/>

</phone>

APPENDIX A ■ XML ESSENTIALS 201

6668appa.qxd 7/14/06 4:21 PM Page 201

<city>Minneapolis</city>
<state>MN</state>
<sex>male</sex>
<hobby>sports</hobby>
<hobby>boats</hobby>
<hobby>carpentry</hobby>

</person>

Notice that the outermost element is now called person because this file contains only one.
New elements have been added to the <name/> tag: <last/>, <first/>, and <middle/>.

■Note In referring to the elements, I am using their empty counterparts, although they are not empty in the
document. In the context of describing them, however, they have no content. Chalk it up to excessive logic.

The new elements make sense conceptually because the full name comprises a first, middle,
and last name. Options for multiple phone numbers are also available under the <phone/> tag. In
this example, there is no home phone, so its element is empty. It is a shortcut for (but carries the
same meaning as) the following:

<home></home>

There is now a <hobby/> tag for each of the hobbies. (You could instead add a tag named
<hobbies/> and then add three <hobby/> tags inside of it.)

Finally, add the quoted nickname and street address containing line breaks:

<person>
<name>

<last>Brown</last>
<first>"Big" Jim</first>
<middle>Austin</middle>
<nick>Big</nick>

</name>
<age>24</age>
<phone>

<office>612-323-0091</office>
<home/>

</phone>
<street> Attn: Jim Brown

Pleax Systems, Inc.
18520 25th Ave

</street>
<city>Minneapolis</city>
<state>MN</state>
<sex>male</sex>
<hobby>sports</hobby>
<hobby>boats</hobby>
<hobby>carpentry</hobby>

</person>

For illustration, I added the nickname to both the <first/> tag and a new <nick/> tag. This
would be a matter of personal preference. For the new <street> tag, notice that because XML is not
based on line breaks for record delimitation, no escaping is needed with this value. Of course, you

APPENDIX A ■ XML ESSENTIALS202

6668appa.qxd 7/14/06 4:21 PM Page 202

might guess that greater-than and less-than brackets in values break the XML format. You’ll learn
about that soon enough.

Note that we invented the markup shown here: <person/>, <name/>, <age/>. All the tags used
here have no meaning outside of the document. This is what makes XML flexible: you can make up
your own formats, use them in files and applications, and retain compatibility with any XML tools
or applications. Of course, there are many standardized XML formats—they include address book
formats (vCard), content syndication formats (Really Simple Syndication [RSS] and Atom), and
HTML itself (XHTML, specifically).

XML can be used for markup as with HTML. It does not tend to make XML easier to learn for
beginners, so I will continue to describe XML in the pure context of data. We will return to this topic
at the end of the chapter.

XML Building Blocks
XML consists primarily of two basic pieces: elements and attributes.

Elements
An element is what people commonly describe as a tag:

<city>Minneapolis</city>

This tag has a name and a value. Its name is city and its value is Minneapolis. An XML docu-
ment always has one or more elements. All but one of these elements are required to be inside other
elements, and the outermost element is referred to as the root element. In this example, <city/> is
the root element because it is the only element.

Element names can contain letters, numbers, and other characters (including non-English and
non-ASCII characters), but they must start with a letter. Nonetheless, it’s a good idea to avoid using
characters that might cause confusion or look out of place. For example, a reader—or software—
might interpret a dash to be a minus sign or interpret a period to be an object method. The software
you use (or write) to process XML usually imposes restrictions on the characters you use before
XML does. Element names cannot contain spaces or start with the letters xml. They should be short
and concise. Most XML dialects stick to lowercase letters (names are case-sensitive), but this is a
matter of preference.

Element values can include other elements, text (Minneapolis, in this case), or a combination
of the two. The content of an XML element is everything from its opening tag to its closing tag,
including white space. Elements can be empty, as shown earlier.

Attributes
The second main piece of an XML document (and a reason why element names cannot con-

tain spaces) is the attribute. An attribute is a name/value pair just like an element, but with stricter
usage rules. The attribute occurs inside of the element tag, with a name, equal sign, and a value in
quotes. Here, two are added:

<city latitude="44°57'N" longitude="93°16'W">Minneapolis</city>

Attributes are usually used to “qualify” the element. More than one attribute in the same tag
cannot use the same name. The naming restrictions are the same as elements, and attribute values
are typically of the short variety.

APPENDIX A ■ XML ESSENTIALS 203

6668appa.qxd 7/14/06 4:21 PM Page 203

Well-Formedness
Well-formedness describes the compliance of a format to its rules. For XML, these rules are rather
straightforward. An element can contain other elements and each element can contain one or
many attributes.

Tag names are case-sensitive, so opening and closing tag names must be spelled identically.
Elements must always have an opening and a closing tag unless they’re empty (in that case, the
<tag/> format can be used). Elements must never cross—elements must be closed at the same level
in which they are opened. The following is not legal:

<person>
<name>

<first>Mike</first>
<last>Stevens</name>

</last>
</person>

It’s helpful to imagine XML elements as file directories that can contain other directories: you
can’t jump up to a parent directory and remain inside of the subdirectory. Following this analogy,
the files within a directory would be an element’s text content, and the directory name and permis-
sions could be considered attributes.

Unquoted attribute values are illegal:

<city latitude=44°57'N>

The proper syntax is as follows:

<city latitude="44°57'N">

You will notice that most XML documents—especially those created by a program—start with
an XML declaration. This provides the XML version and character encoding of the document, which
is discussed later.

<?xml version="1.0" encoding="UTF-8"?>

For now, note that most of the examples in this book omit this declaration—and most XML
parsers do not enforce it.

White space in the content of elements is preserved with XML unless you specify a different
behavior to your XML parser. This is unlike HTML, which consolidates consecutive white space
(spaces, tabs, and so on) to a single space. Also note that a new line is always stored as line feed (LF)
in XML documents. Windows applications usually store a new line as a pair of characters (a carriage
return plus an LF); in Macintosh Classic applications, a carriage return (CR) is typically used. But
XML applications on all platforms (should) know to read and store lines in an XML file terminated
with a single LF.

Because the greater-than and less-than signs are used for tags, when they occur in the content
of an element they must be replaced with an equivalent entity, which is already familiar to HTML
users. Assume that the text is the following:

$x > $y

This text can be placed into an element as follows:

<statement>$x > $y</statement

APPENDIX A ■ XML ESSENTIALS204

6668appa.qxd 7/14/06 4:21 PM Page 204

You can define your own entities to be used (discussed later); the default XML entities are those
characters used in the tags (see Table A-1).

Table A-1. Default XML Entities

Entity Meaning Character

lt Less-than sign <

gt Greater-than sign >

amp Ampersand &

apos Single quote '

quote Double quote "

Finally, XML files can contain comments in the following form:

<!—comment -->

■Tip XML editors check for compliance with the syntax rules as you type. Alternatively, shell tools such as the
libxml2 xmllint utility (http://www.xmlsoft.org) can be used to check syntax:

$ xmllint --noout people.xml

This code outputs contextual errors in the file or outputs nothing if the file is well-formed XML.

CDATA
An XML parser parses the text content inside elements; it must do this to determine where the closing
tag occurs. This is why illegal characters—such as the greater-than and less-than characters—must
be escaped (expressed as entities).

XML does provide for the storage of data without using entities. For example, you might want to
store a math equation or a script in the content of an XML element (this will be familiar to JavaScript
users), and escaping every greater-than and less-than symbol could be excessive. To force the XML
parser to ignore the content of an element, you can use a CDATA section. It begins with the text
<![CDATA[and ends with]]>, as shown in this example:

<script>
<![CDATA[

function decide(x,y) {
if (x > y && y > 0) then {

return x;
}

}
]]>
</script>

The only string the CDATA section cannot contain is]]>, making nested CDATA sections
impossible.

You should use CDATA sparingly; it is not intended as means of “getting around” strict XML
formatting. XML Stylesheet Language Transformations (XSLT) beginners sometimes put HTML

APPENDIX A ■ XML ESSENTIALS 205

6668appa.qxd 7/14/06 4:21 PM Page 205

fragments in these sections to recombine them later. This practice usually leads to unintended
results and lessens the benefits of using XML and/or XSLT in the first place. When using CDATA,
keep in mind that to the XML processor, the following are equivalent:

<example><![CDATA[x > y]]></example>

<example>x > y</example>

The effect of CDATA sections is to have the processor treat element content that is not escaped
as if it were. After these examples have been parsed, they are essentially the same to the program.

That’s really all there is to the syntax rules of XML. There are a few more content types, but we’ll
get to those later. You can probably tell that XML itself has little to do with its usefulness as applied
to real-world formats.

Relationships
Many XML technologies use the relationship between elements and attributes to process the XML.
The outermost element is the root element, and elements inside of it are child elements. All ele-
ments in an XML document have one (and only one) parent element—with the exception of the
root element. In this example, the <name/> element has a parent and children.

<person>
<name>

<last>Brown</last>
<first>"Big" Jim</first>
<middle>Austin</middle>

</name>
<age>24</age>

</person>

For element <name/>, its parent is <person/>; its children are <last/>, <first/>, and <middle/>.
The element <age/> has no child elements; its parent is also <person/>. Because elements <name/>
and <age/> share the same parent, they are siblings.

All elements that occur inside of another are descendants of that element. The descendants of
<person/> are <name/>, <last/>, <first/>, <middle/>, and <age/> (every element in the document
other than itself). Similarly, all elements that occur as a parent or parents-of-parents are ancestors.
In this example, <middle/> has the ancestors <name/> and <person/>.

Attributes that occur within an element tag are technically children of that element and have
the same relationships just described.

Namespaces
Whether on the web, in programming languages, or elsewhere, a namespace qualifies some piece of
data to make it unique. The HTTP path index.html depends on the URL before it to be located and
differentiated from all other index.html paths. XML also provides namespaces to make element
names unique. Take the case of this XML document:

<path>/images/stephan.jpg</path>
<size>122K</size>

APPENDIX A ■ XML ESSENTIALS206

6668appa.qxd 7/14/06 4:21 PM Page 206

The element, which is reminiscent of the HTML image element, could lead to conflicts
by processors or people. By using namespaces, element and attribute names can be qualified with a
prefix:

<myapp:img>
<path>/images/stephan.jpg</path>
<size>122K</size>

</myapp:img>

■Note You might wonder why we would want to use a namespace if a document contains only one kind of
 element, and any application that uses this document is unlikely to know about the HTML version. In prac-
tice, most XML documents do not need to use namespaces. If you intend your XML to be used by several people or
multiple applications, it’s probably a good idea to use them. It can also save headaches if you later decide to dis-
tribute your XML or use it in different environments, but it is by no means required.

XML namespaces are still local to the file in which they occur. To be unique outside of your file,
the prefix gets associated with a unique Uniform Resource Identifier (URI). Here again is the previ-
ous example:

<myapp:img xmlns:myapp="http://www.apress.com/myapp">
<myapp:path>/images/stephan.jpg</myapp:path>
<myapp:size>122K</myapp:size>

</myapp:img>

The xmlns attribute prefix is special; it tells the reading application to associate the namespace
prefix myapp with the specified URI. Thus, the element namespace myapp is arbitrary: the XML parser
relies on the URI to determine uniqueness. Putting this declaration in the <myapp:img/> element
causes all child elements with the same namespace (notice that these were added) to also be associ-
ated with that URI. The parser sees this URI (in this case, a URL) as simply a string, used to give the
namespace a unique name. The URI is not accessed or used by the parser.

To avoid repeating a namespace for every child or an element, a default namespace can be
declared:

<path>/images/stephan.jpg</ path>
<size>122K</size>

This is equivalent to the previous example, but shorter and more readable. When namespaces
are used, they are often used to permit the mixing of elements that do not share namespace. In that
case, this shortcut obviously cannot be used, and each element requires a namespace prefix or it
will be assumed to not have a namespace. XSLT is one such case (it will be demonstrated shortly).

Validation
Given so much flexibility to invent your own markup (XML “dialect”), how can you enforce a for-
mat on your XML documents? You’re probably familiar with the notion of validation: web forms
get validated to ensure that they have all the required information, merchants validate credit card
numbers to be sure that they are acceptable, and so on. To validate XML means to not just confirm
well-formedness but also to confirm that it conforms to additional rules. These rules can include
the names of elements and attributes, the number of children an element is allowed to have, or
even the kind of content an attribute or element can contain.

APPENDIX A ■ XML ESSENTIALS 207

6668appa.qxd 7/14/06 4:21 PM Page 207

Consider the previous XML example. This document could be fed to an XML parser and pass
with flying colors—it is well-formed XML. However, no address book application could make heads
or tails of it. It might make for a cute message to a friend, equivalent to saying this:

Name: Jim Brown
City: Minneapolis

But again, this information would not be particularly useful to an application because it doesn’t
know for certain what is being described. To provide data in a format that can be understood by an
application, you need to know which standards it supports. For example, a prevalent standard for
address book data is called vCard and is supported (or used natively) by most contact-management
applications. vCard (and its XML version, RDF vCard) documents can be imported into an address
book, and vCard would then know exactly what each field represented. The preceding example might
look thus in the vCard format:

BEGIN:VCARD
VERSION:3.0
CLASS:PUBLIC
REV:2005-09-28 13:35:45
FN:Jim Brown
N:Brown;Jim;;;
ADR;TYPE=work:;;;Minneapolis;;;
END:VCARD

Address book applications understand this format because they have been written to process it.
Similarly, address books by different developers running on different operating systems could export
and import address books without loss of information. This is another benefit of a text-based format:
no specific operating system software is necessary to read the file, as is true for binary data formats.

Credit card numbers are often validated before they are charged. For example, many online
orders are emailed to the merchant, who then charges your card manually (instead of charging the
card in real time as you place an order). To save the merchant the hassle of getting an erroneous
credit card number (and to save you the hassle of getting a phone call to confirm it), credit card num-
bers are assigned to allow a simple computation to know whether the number is valid. Similarly,
software that reads an XML document can quickly confirm whether it conforms to the expected for-
mat. If it doesn’t, processing stops and an error is reported. This saves the software the expense of
working on data that might be incomplete. In the case of software that generates the XML file, valida-
tion can be performed before the document is even saved.

Thus, validation is a process that a person or software must perform, and both require some for-
mal description of the rules for this to happen. There are two popular ways to describe these rules: by
using Document Type Definition (DTD) and XML schema. DTDs are older and less concise; schemas
are concise, flexible, and are written with XML (making them easy to parse for XML software). If you
are familiar with the idea of RDB schemas, the idea isn’t too different: an RDB schema describes what
the database (its tables and rows) looks like and what it is allowed to contain.

XML schemas do more than enforce the format of an XML file; they also explain to developers
what a given XML document should look like in the form of documentation. It is important to under-
stand that without some formal description of an XML format, even well-formed XML is useless for
the storage or exchange of data. Sure, a human might be able to figure out what the document con-
tains, but software has no point of reference. For this reason, XML is frequently referred to as “not
very useful,” and this assessment is correct. XML is simply some rules for formatting tags and their
contents; it’s the schema for the XML that makes the document intelligible to software and its appli-
cation that makes it useful.

APPENDIX A ■ XML ESSENTIALS208

6668appa.qxd 7/14/06 4:21 PM Page 208

XML Schemas
I won’t describe DTD here because it is a somewhat dated and unpopular format for describ-

ing rules. XML schema is the first schema language to be recommended by the World Wide Web
Consortium (W3C) and is written in XML. Schema documents typically have the extension .xsd.
The XML schema is a complicated subject all by itself, so I only introduce the topic here. Note that
XML schemas are not completely necessary for using and understanding either XML or BDB XML.

XML schemas enable you to describe what constitutes a “valid” XML format for your data,
with varying degrees in strictness. As was already discussed, well-formed XML is not necessarily
intelligible to software. Consider that an XML element that you expect to contain a price for a
product instead contains text or contains two prices instead of the expected single element. This
is an error, even if the XML document is well-formed. Schemas give you a way to describe and
enforce these rules.

Here again is the XML file person.xml:

<person>
<name>

<last>Brown</last>
<first>Jim</first>

</name>
<age>24</age>

</person>

XML elements are optionally ordered, which means that some applications might depend on the
order of tags, and that order must be retained to reproduce or write out the XML file. In the example,
the <last/> tag comes before the <first/> tag. Although this placement is purely coincidental, you
might want to enforce an order on these elements. Notice that these same two elements contain
string content, whereas the <age/> element contains a number.

■Note Of course, having an age field in any application makes little sense because you would want it incre-
mented; given a birth date to do so, you could compute a person’s age. Unless, of course, the list shows deceased
persons. I digress.

Here is an XML schema document to accompany person.xml; it is called person.xsd:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns="http://www.w3schools.com">
<xs:element name="person">

<xs:complexType>
<xs:sequence>

<xs:element name="name">
<xs:complexType>

<xs:all>
<xs:element name="first" type="xs:string"/>
<xs:element name="last" type="xs:string"/>

</xs:all>
</xs:complexType>

</xs:element>
<xs:element name="age" type="xs:integer"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

APPENDIX A ■ XML ESSENTIALS 209

6668appa.qxd 7/14/06 4:21 PM Page 209

The document is valid XML and uses namespaces. The root element is <xs:schema/>, indicating
that this it a schema document. The same element defines the xs namespace and defines a default
namespace. So far, the document is not saying anything about the "person" XML.

The bold sections in this schema example are the opening <xs:element/> tags that describe
the "person" XML file. The first child element is <xs:element/> with an attribute "name" with value
"person". This element describes the root element of this XML file—if the XML file did not begin
with the <person/> element (which it does), an XML parser would fail right away with a validation
error. Other <xs:element/> elements describe the <name/>, <first/>, <last/>, and <age/> elements.

Without delving too deeply, note that the <xs:element/> tags for the <first/> and <last/>
elements have a type of "xs:string", meaning that any string value is valid for those tags. By con-
trast, the <age/> tag’s content is to an integer with the type "xs:integer". The <xs:complexType/>
elements occur beneath elements that are allowed to contain other elements. In this case, there
are the <person/> and <name/> elements; no others are allowed to have child elements. Finally, the
<xs:sequence/> element requires that the children of <person/> occur in the order specified (having
the <age/> tag before the <name/> tag would result in a validation error), and the <xs:all/> element
tells the validator that <first/> and <last/> are required—but not necessarily in the order shown
here. You can see that schemas give you a lot of control over what XML format you will consider legal.

■Note Most XML editors enable you to associate an XML document with a schema, performing validation as
you type. Alternatively, shell tools such as the libxml2 xmllint enable validation, but they don’t always do this by
default. You can also pass it a path to an XSD for validation:

$ xmllint --schema people.xsd people.xml

This code outputs errors if the XML file does not conform to the specified schema.

Although an XML schema must be enforced, the XML document typically contains a reference
to the XSD document. In the person.xml file, the xsi namespace is defined (the schema namespace),
and the location of the schema document is specified:

<person xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="person.xsd">

<name>
<last>Brown</last>
<first>Jim</first>

</name>
<age>24</age>

</person>

Not all XML processors recognize this declaration or enforce it by default. Consult documenta-
tion for your XML parser or application to determine whether it is supported.

When should you use XML schemas? XML is pretty flexible, and schemas offer a lot of control.
Even when you don’t intend to validate all the XML you use, schemas can help you create well-
designed XML and avoid some of the bloating and confusion that XML might otherwise cause
when allowed to freely “evolve.”

XPath: the Gist
As if this weren’t enough fun already, it gets even better. Much of the power of XML becomes appar-
ent when developers begin the process of searching and querying documents. In fact, XML querying

APPENDIX A ■ XML ESSENTIALS210

6668appa.qxd 7/14/06 4:21 PM Page 210

technologies are the very reason why many shops opt to use XML in the first place: the ease of use,
intuitive syntax, and standardized usage. This is certainly the case with BDB XML.

XPath is the original and most widely supported language for querying XML documents. It is
now in version 2.0, which is fully supported by BDB XML. This section describes only XPath 1.0. But
never fear—version 1.0 is a subset of 2.0 and is completely compatible with even the newest imple-
mentations.

Paths
I earlier compared an XML document to a file system. File directories have children in the form of
other directories, attributes in the form of names and timestamps and permissions, and content in
the form of files. Regardless of your choice of operating system, the syntax of a typical file path is
familiar:

/home/garron/documents/resume.pdf

This example refers to a resume.pdf file, inside a documents directory, inside a garron directory,
inside a home directory. The home directory could be considered the root (Unix mount points and
nomenclature notwithstanding), the garron directory could be considered a child, and so on.

XPath uses a similar syntax to refer to nodes in an XML document. For these purposes, a node
is any piece of data in the XML file: an element, an attribute, or even the content of an element can
be considered a node. Using our person XML example, the following path refers to the node for the
person’s last name in that file:

/person/name/last

Executed against the XML document with an XPath interpreter, this query would match one
node of our document: the element <last/>. It would return the value <last>Brown</last>, in this
case. You can test this with several XPath command-line tools.

Nodes
It is important to understand why this example refers to the <last/> element instead of just giving
the value Brown. Forget any notion you might have of a node as a tag. XPath (and other technolo-
gies, including the Document Object Model [DOM]—discussed next) view every part of an XML
document as a node, any place in the document it can return some value—whether an element,
an attribute, or text content. Each is a kind of node, and an XPath query sees it as such. Nodes can
contain other nodes, as is the case with this example. The <last/> element contains a child text
node with value Brown. If elements and attributes were object classes in a given programming lan-
guage (as is the case with the XML DOM), they would be subclasses of a parent node class and
would inherit its properties. Thus, a node is the most primitive piece of an XML document, and
everything in an XML document is a node. XPath (and XQuery) operate on this data model view
of a document instead of the text it contains. The differentiation is critical to understanding how
technologies such as XPath view a document and is explored in more detail in the next section.

There are several ways to get the text value of an element. The most universal is to append the
text() “node test” to the end of your XPath query:

/person/name/last/text()

In truth, every word in this expression is a node test. The string person is used by the processor
to test the name of the top-level elements, as is name and last. The text() example is also a test, but
in the form of an instruction to match text nodes (this is explained in the next section). Here, the
XPath processor is told to return the text node children of the <last/> element, and you would get
back the value Brown.

APPENDIX A ■ XML ESSENTIALS 211

6668appa.qxd 7/14/06 4:21 PM Page 211

Some XPath processors enable you to query for a text value directly. For example, the Perl
XML::LibXML module gives you a findvalue() method on node objects; this returns the literal value
of the node, which means all child text it contains and no child elements (or text children of child
elements).

Understanding how XPath and DOM processors (and everything that uses them) treat XML
nodes will save you future headaches.

Document Object Model (DOM)
A discussion about the DOM is required to understand how XPath and other XML technologies
“see” an XML document. The XML DOM is a W3C specification to give programming languages a
consistent means of processing XML. When a program parses an XML file, it must give the file some
internal representation to enable a program to browse it. It’s this internal representation that an
XPath processor uses to find requested nodes in the document.

The DOM defines a set of node types, which are typically defined as an object class in pro-
gramming languages. (You don’t need a solid understanding of all these node types to understand
or use the DOM or XPath.) Each type might contain children nodes of the types listed in Table A-2.
(This table is an abbreviated list of node types; I have omitted DocumentType, DocumentFragment,
EntityReference, ProcessingInstruction, Entity, and Notation for clarity.)

Table A-2. Abbreviated List of DOM Node Types

Node Type Description Children

Document The entire document, root node Element (only one), Comment

Element Element Element, Text, Comment, CDATASection

Attr Attribute Text

Comment Comment None

Text Text content (character data) None

CDATASection Block of CDATA text None

Assume that you’re working with this XML document:

<person>
<!-- Record needs revision -->
<name lang="en">

Mr.
<last>Brown</last>
<first>Jim</first>

</name>
<age>24</age>
<note><![CDATA[24 > 20]]></note>

</person>

Parsing it into a DOM tree will result in a code language similar to Table A-3, regardless of the
language or DOM implementation you are using. Indents identify children, and parentheses con-
tain the node name (if any) and value (if any). Compare this tree closely with the preceding XML;
you will probably find that it does not match your expectations.

APPENDIX A ■ XML ESSENTIALS212

6668appa.qxd 7/14/06 4:21 PM Page 212

Table A-3. Parsed DOM Node Tree and XPath for Each Node

Node Tree Corresponding XPath

Document ("#document", none) /

Element ("person", "") /person

Comment ("#comment", " Record needs revision ") /person/comment()

Element ("name", "") /person/name

Attr("lang", "en") /person/name/@lang

Text("#text", " Mr. ") /person/name/text()

Element ("last", "") /person/name/last

Text("#text", "Brown") /person/name/last/text()

Element ("first", "") /person/name/first

Text("#text", "Brown") /person/name/first/text()

Element ("age", "") /person/age

Text ("#text", "24") /person/age/text()

Element ("note", "") /person/note

CDATASection (none, "24 > 20") (none)

Note the following:

• The top or root node is /, not /person. This node has no name or value; it has only children
nodes. (Some processors report a name #document or no name.) This node can have only one
element child because more than one would not be well-formed XML (in which every node
needs a parent but one).

• The /person element has five child nodes: a text node, a comment node, two element nodes,
and a CDATA section.

• The /person element has no obvious value, but /person/text() has a white space value. All
the white space inside of <person/> but not contained in its children elements is counted as
its value.

• The /person/comment() node is addressed with the comment() function, much as text nodes
need text(). Comment nodes have no given name. (Some processors report a name #comment
or no name.)

• The attribute node /person/name/@lang has a name and value. Getting values out of attrib-
utes is inexpensive.

• The element /person/name/text() has a value that includes the white space in <name/>,
including line breaks (not shown here). Text nodes have no given name. (Some processors
report a name text or no name.)

• White space throughout the document has been ignored by setting an option at parse time.
Otherwise, the previous node tree would have many text nodes containing only white space,
including each newline and leading white space. This often leads to confusion when query-
ing and is expensive to both parse and store. (For this reason, prettily printed XML that
retains all formatting does not store efficiently.)

APPENDIX A ■ XML ESSENTIALS 213

6668appa.qxd 7/14/06 4:21 PM Page 213

• The CDATA node is not addressable with XPath. These sections are treated as text blocks
that occur as text within their parent element. In this case, even though <note/> contains
no text other than the CDATA section, the processor expands the CDATA to text content.
Calling /person/note/text() gives a value of 24 > 20, even though the DOM tree contains
no text child of <note/>. CDATA is simply a node type of convenience for enclosing charac-
ter data that is not trusted to be well-formed XML. (Some processors report a name of
#cdata-section, cdata-section, or no name.)

We will return to the DOM shortly to discuss the classes and their methods in more depth.

ELEMENTS OR ATTRIBUTES?

On multiple occasions I have been asked, “When should I use elements instead of attributes to store information?”
This is really a matter of personal preference, with some obvious constraints. First, only one attribute of a given
name can exist per element. If you require more than one piece of data by the same name, you need to use ele-
ments. Second, storing anything but relatively short text values in attributes makes for poor readability. If the value
is anything else, an element is the better option.

In other cases, I do have a personal preference. The way you like to code can influence where you prefer to
put simple values. When writing XPath predicates, I find it easier to query off of attributes than I do elements, mostly
for the sake of XPath readability, so I tend to put oft-queried values in attributes. Also, in most DOM implementa-
tions, attribute lookups tend to be slightly faster than element values because element text value queries have to
look at the text child nodes of that element to compare.

On the other hand, when working with DOM objects, I find it slightly easier to add and manipulate elements
than to do so with attributes, partly because I do it more often. So I put data that changes frequently into elements.

XPath: the Details
With an understanding of how the XPath sees nodes in a tree of XML, XPath is easier to learn. Many
developers opt to use XPath over the DOM because of its terseness and ease of use. To keep this
introduction simple, I will cover only the most common operators, axes, and functions.

Contexts
All XPath expressions have contexts. If you were using a shell to browse a file system, you might find
yourself several directories deep from the root directory. From there, you could cd to a parent direc-
tory, to a child directory, to a sibling directory, and so on. XPath is similar in that a statement carries
varied meaning depending on the node in a node tree that is referenced. The XML analog of a cur-
rent working directory on an operating system is a current node.

Path Operators
XPath provides the expressions shown in Table A-4 to select or navigate nodes. Each expression is
actually a shortcut for a longer formal operation.

APPENDIX A ■ XML ESSENTIALS214

6668appa.qxd 7/14/06 4:21 PM Page 214

Table A-4. Common Path Operators

Expression Description

/ Selects from the root node at the start of an expression; otherwise
delimits parents and children

// Unrestrained select operation from the current node that selects nodes
anywhere in the document

. Current node

.. Parent of the current node

@ Selects attributes

* Element node wildcard; matches any element node

@* Attribute node wildcard; matches any attribute node

node() Matches any node of any kind

The period operators are used primarily in predicates, discussed in the next section. The others
are fairly straightforward in their usage.

Table A-5 lists some example expressions.

Table A-5. Example Paths

Expression Description

/ Selects the root document node

//age Selects all nodes named age regardless of where they occur in the
document

/person/name/* Selects all child elements of /person/name

/person//last Selects all elements named last that descend from /person

name/@lang From the current node (this is the context), selects the lang attribute of
any child nodes named name

//@* Selects all attribute nodes in the document

Clearly, the use of the // operator incurs substantial overhead because the XPath processor
must traverse the entire XML file (or all descendants if it comes after the current node) to determine
all matches.

Predicates
A predicate is a conditional that gets placed in your query, enabling you to select nodes more specif-
ically and use more criteria than a simple path. Predicates always occur inside of straight brackets
within an XPath expression, after a node for which the query needs to be qualified. You’ll examine
the most common operators in a moment. For now, consider the examples of XPath queries that
use simple predicates shown in Table A-6.

APPENDIX A ■ XML ESSENTIALS 215

6668appa.qxd 7/14/06 4:21 PM Page 215

Table A-6. Example Expressions Using Predicates

Expression Description

/person/age[1] Selects the first element node named age that is a child of /person

//name[@lang] Selects all nodes named name that have an attribute lang from
anywhere in the document

/person[name/@lang = "en"] Selects a node named person if it has a child name that in turn has
an attribute lang with value "en"

/person[age > 20] Selects a node person if it has a child element age with a value
greater than 19

/person/name[last()] Selects the last element name that is a child of /person

XPath statements are used to pull data out of a document and to determine a document match.
Predicates are often used as if statements against an XML document. Take the following XPath query,
for example:

/person[name/last = "Johnson"]

Knowing that you will be querying large collections of XML with XPath should make the intent
of this statement obvious. You probably don’t want to select the matching /person node as much as
you want to find all documents about a person with the last name "Johnson". This expression can be
used for both purposes.

■Note Many examples use the text() function appended to a path, but it does not do what many XPath pro-
grammers think it does. Instead of returning the string value of a query, it is a node test that returns all child text
nodes. The function string() is more often what is intended; it returns the string result of a query, the path pro-
vided as argument to string(). Of course, this works only when the interface used to make the query accepts a
return value as text instead of nodes.

Predicates supply only criteria for the processor to apply to the node selection. They don’t
select anything themselves; they provide tests that the select expression must accommodate.
Each is evaluated in context, given the current node at that point in the expression. Consider this
predicate-free expression:

string(/person/age)

This is the select statement that grabs the text content of the /person/age element. Adding a
predicate might result in this expression:

string(/person[name/first = "Billy"]/age)

The predicate causes the processor to narrow the selection criteria. A natural language ver-
sion of the original expression would read, “Give me the age of any person with the first name of
Billy.” Notice that the predicate starts with name; at the point in which the predicate is evaluated,
the current node is /person. After the predicate, the selection path picks right up with a child age of
/person. The predicate doesn’t interrupt the selection; it merely qualifies the portion of the select
statement that precedes it.

Note that predicates can be chained and even nested:

/person[name[@lang = "en"]/first = "Jim"]/age

APPENDIX A ■ XML ESSENTIALS216

6668appa.qxd 7/14/06 4:21 PM Page 216

This code selects the age element of a /person/name that has an attribute lang with value "en",
which in turn has a /person/name/first element with text value "Jim".

Operators
The most common XPath operators are already familiar to you. Table A-7 shows an abbreviated
listing.

Table A-7. Common XPath Operators

Operator Description Example

+ Addition 20 + 4

- Subtraction 20 - 4

* Multiplication 5 * 4

div Division 20 div 4

= Equal (test, not assign) age = 24

!= Not equal age != 23

< Less than age < 25

> Greater than age > 23

<= Less than or equal to age <= 30

>= Greater than or equal to age >= 24

or Logical or name/first = "Sue" or name/first = "Jim"

and Logical and age < 25 and age > 19

| Union of node sets /person/name/first | /person/name/last

Operators used in XPath predicates do not make variable assignments; they stick around only
long enough to determine selection criteria. XQuery greatly broadens the functional potential of
XML queries, but we’re not there yet.

Axes
Things get a bit more complicated with XPath axes. (Do not worry if the concepts here don’t register
immediately; they will after you use them in real examples.)

An XPath axis defines directions that a query can take through an XML document. Axes have
been in all the XPath examples thus far, but you have been using shortcuts. For example, each ele-
ment and attribute name in the slash-delimited queries implies a child selection from the current
node. More formally, each slash-delimited section of an XPath expression is referred to as a step.
This is important for understanding the way a query is processed—starting at the left, evaluating
each step in turn, taking the results from that step, and applying the next step to those results. In
this way, an XPath expression is really a set of selection instructions given to the processor in the
order of evaluation.

Recalling the file system analogy, simply typing cd name at a shell prompt will succeed only if
the current working directory (whatever it might be) contains a directory named name. XPath also
treats a single name in isolation as a child element. The explicit way to declare the child axis is to
put the axis name in front of the element name by using double colons:

child::name

APPENDIX A ■ XML ESSENTIALS 217

6668appa.qxd 7/14/06 4:21 PM Page 217

The name portion of this expression is referred to as the node test, with child as the axis.
(Remember that the XPath processor uses the node test to test the node names and values as it
crawls the node tree.)

When would you want to use such verbosity? The answer concerns contexts. When working
with XML and related technologies such as XSLT and XQuery, you might want to know, for example,
whether a given node descended from another node and how you can gain access to those nodes.
Remember that nodes are represented within programs as class objects in the DOM model. Pro-
grams pass these objects around all by themselves, without the benefit (or overhead) of passing the
entire XML tree. Having a way to know something about that node’s context is useful in such cases.

The available axes used in XPath are listed in Table A-8.

Table A-8. XPath Axes

Axis Description

ancestor Ancestors of the current node

ancestor-or-self Ancestors of the current node and the current node

attribute Attributes of current node; the abbreviation is @

child Children of current node; this is the default in the absence of an axis

descendant Descendants of the current node

descendant-or-self Descendants of the current node and the current node

following Everything in the document after the current node (excluding
descendants)

following-sibling All siblings after the current node

namespace All namespaces currently open at the current node

parent Parent of the current node

preceding All elements before the current node (excluding ancestors)

preceding-sibling All sibling elements before the current node

self Current node

■Note Seeing that @ is an abbreviation for the axis attribute, you might be tempted to declare . as an
abbreviation for the axis self. In actuality, the proper basis expression for . is self::node() because an
axis is not a selection itself; it is a direction for the selection to take place. Similarly, .. is an abbreviation for
parent::node(), and // is an abbreviation for descendant-or-self::node().

With an axis placed before a node test (as with child::name), the expression is often referred
to as a basis. A predicate that follows a basis further qualifies it (as with child::name[1]). Together
they comprise a step, and a list of steps forms the location path.

■Caution Axes used with predicates can deliver unexpected results—unless, of course, your expectations
are accurate. Although most basis expressions return matching nodes in order, some axes change that order.
For example, the axis ancestor returns nodes in reverse order, which makes sense because you’re looking “up”
from the current node. This is important when using predicates that use ordering to apply select criteria. For exam-
ple, ancestor::name[1] returns the closest ancestor element name, not the first ancestor name in the document.

APPENDIX A ■ XML ESSENTIALS218

6668appa.qxd 7/14/06 4:21 PM Page 218

Axes are a potentially confusing element of XPath, but you won’t run in to them very often.
When you do, they will make sense given their context.

Functions
The last aspect of XPath to be discussed is the XPath function. Functions introduce the missing
functionality to XPath expressions. There are many standard functions in XPath 1.0 and many more
in XPath 2.0, and most XPath implementations make it easy to write your own functions in a given
programming language. Functions take on a life all their own with XQuery. Put simply, functions are
where the interesting stuff happens.

■Note You have repeatedly seen the use of comment(), node(), and text() where a node name would nor-
mally be in a node test. They look like functions; they are functions because they return values to the processor.
But where a node test of age in the path /person/age is used as a literal, comparing age with the names of each
child element of person (and returning any nodes that match the node test), these function node tests tell the
processor to return certain kinds of nodes. Because comment and text nodes do not have names, this is the only
way to address them.

Functions in XPath statements occur anywhere—they can be in predicates or they can contain
the entirety of the path expression. As an example of the latter, the following demonstrates the func-
tion contains() used in a predicate:

/person[contains(name/first, "Dan")]

This function takes two arguments and returns true if the second string is contained within
the first. Thus, this query would select /person if the text value of /person/name/first contained
the string "Dan". “Why isn’t the first argument to the function name/first instead of name/first/
text(),”you ask? It could be either, in fact. But because the contains() function expects text argu-
ments, the XPath processor is smart enough to know that handing the node first to the function
instead of its literal text value wouldn’t achieve the desired result. Most XPath functions reflect a
similar behavior, and you can cause your own custom functions to do the same.

Here is an example of a math function:

count(/person/name/*)

The function count() simply counts nodes passed to it. This is an example of an expression
that doesn’t select nodes. It returns a string instead.

Arguments to XPath functions can be fully qualified paths or they can use context:

/person[age > count(/person/shoesize)]/age

This expression selects the age element node, but only if that age value is greater than the
person’s shoe size. The expression could have been written this way:

/person[age > count(shoesize)]/age

The lack of a leading forward slash on the expression as argument to count() tells the processor
that the note test is relative and not absolute.

More XPath functions are shown in Table A-9.

APPENDIX A ■ XML ESSENTIALS 219

6668appa.qxd 7/14/06 4:21 PM Page 219

Table A-9. Some XPath Functions

Function Description

ceiling() Rounds a passed number to the smallest integer not smaller than the
number

concat() Concatenates all string arguments into one string

contains() Returns true if the first string argument contains the second string
argument

last() Returns the index of the last node in the context note set

name() Returns the name of the passed node

local-name() Returns the local part of the name of the first node in the passed node
set, minus a namespace

normalize-space() Returns a white space–normalized copy of the passed string (leading
and duplicate spaces removed)

not() Returns the inverse of the passed value

position() Returns the position of the current node in the context node set

starts-with() Returns true if the first string argument starts with the second string
argument

sum() Sums the text values of all nodes in the passed node set

You will most often use functions within predicates to place conditions on your select. Here,
too, you have already seen shortcuts for some of the functions:

/person/age[1]

This index syntax is a shortcut for the position() function:

/person/age[position() = 1]

The implication is that the node test before the predicate is an argument to the function itself.
This is what is meant by the context node set in the function list descriptions. The node selection
before the predicate comprises a node set, and functions such as position() and last() address
this set as an array. This example selects the second-to-the-last age element that is a child of person:

/person/age[position() = last() – 1]

Finally, consider this multipredicate example:

/person/name[@lang = "en"]/*[position() = last()]

Here, everything before the position() = last() predicate determines the node set to be used
to determine the set positions. This example selects the last child element of /person/name where
name has an attribute lang with value "en".

In XML applications, custom XPath functions are frequently written and used to introduce
external data into the evaluations. We won’t look at the writing of custom XPath functions in this
book, but most XPath implementations make it a relatively painless thing. You will likely find it
unnecessary using BDB XML and XQuery because they provide better ways to move data between
query processors and the application. A major exception is if you want to use BDB XML databases
with XSLT.

This section has described XPath 1.0, which is more lightweight than XPath 2.0. Note that BDB
XML uses XPath 2.0 and XQuery, which adopt XPath 1.0 as a subset (and therefore will understand
examples in this section). The differences are outlined in Chapter 7, “XQuery with BDB XML.”

APPENDIX A ■ XML ESSENTIALS220

6668appa.qxd 7/14/06 4:21 PM Page 220

XML DOM, Continued
This chapter already discussed the DOM in some detail; this section will look briefly at the DOM
methods.

The whirlwind of buzz around the technologies dubbed Asynchronous JavaScript and XML
(Ajax)—Google Maps is the showcase example—is really just excitement over a new approach to
using tools that have been around for some time. Within a web browser, the DOM is the interface
to change the HTML dynamically using JavaScript. The XML DOM is a specification for program-
ming languages to navigate and manipulate XML. It specifies classes and methods that have been
adapted to interfaces in most programming languages and makes fairly easy work of using XML
within programs, as well as moving between programming languages.

The node tree example earlier in this chapter illustrated how an XML processor views a parsed
XML document. The XML processor can be a command-line utility, a programming API, or a web
browser. The Firefox web browser has a DOM Inspector window accessible via the Tools menu that
shows this internal document representation and highlights within the web page a DOM node
selected in the Inspector window (see Figure A-1).

Figure A-1. The Firefox DOM Inspector window

DOM implementations do vary, but all share common (or at least similar) class and method
organizations. The DOM defines the following interfaces that are implemented as classes. Table A-10
shows an abbreviated list.

APPENDIX A ■ XML ESSENTIALS 221

6668appa.qxd 7/14/06 4:21 PM Page 221

Table A-10. DOM Classes with Some Attribute and Method Examples

Class Attribute Example Method Example

Node nodeName, nodeValue, childNodes replaceChild, appendChild, insertBefore

Document doctype, documentElement createElement, createComment

Attr name, value

Element tagName getAttribute, setAttribute

NodeList length item

Text splitText

CharacterData data, length appendData, insertData, deleteData

The DOM interface enables both the reading and navigating of a parsed XML file, as well as the
programmatic construction of an XML file. Writing XML using the DOM interface has the benefit
that you never need to worry about properly formatting your elements, closing your tags, or escap-
ing entities in text content because it is taken care of for you. Moreover, XML written with the DOM
interface is assured to generate the same tree when parsed. Because XML is intended to be processed
programmatically (not that you wouldn’t want to read a book written in XML, of course), it makes the
most sense to generate it programmatically, too.

■Note There are in fact several versions of the DOM specification, each building upon the next: Level 1, Level 2,
and Level 3. Level 1, which is referred to as dynamic HTML, defines the basic DOM structure, node types, and
classes and methods. Level 2 adds support for Cascading Style Sheets (CSS) and events to the DOM, making the
rich interaction of applications such as Google Maps easier. Level 3 adds a host of event modules that include
loading and saving documents and an XPath module. Up to this point, XPath interfaces (not the query language,
but the methods to execute them) have varied significantly between implementations. You won’t deal with much
that isn’t defined in Level 1 in this book.

Implementation Considerations
DOM implementations are not always (or even usually) compatible—you cannot use two DOM
libraries and pass documents or nodes between them. This isn’t much of a problem unless you need
to do very tight integration (for example, BDB XML with an XSLT processor). If so, your choice of
programming language is more constrained. This is uncommon, however. XML makes it easy for
incompatible programs to operate together with the same data, and not having compatible binary
DOM objects is not much of a problem. In my own production environments, I use Python and Perl
BDB XML interfaces to query and modify the database, but I use libxslt and Perl to perform XSLT
transformations on an accompanying web site. Because BDB XML queries—whether returning lists
of document matches or values—do not give you a DOM for that object without the overhead of
rebuilding it, little is actually saved by operating on the same DOM object between applications.

In other words, don’t worry about DOM compatibility when it comes to building applications
that perform different operations with the same XML. You might choose to keep text copies of your
XML files for use by processors other than BDB XML, treating them as authoritative and updating
them to the database when they change, or treating the database as authoritative and getting XML
source from your queries to parse.

Of course, if you are concerned with DOM compatibility, the Apache Xerces library should
dictate your choice of processors and languages because BDB XML is built on it.

APPENDIX A ■ XML ESSENTIALS222

6668appa.qxd 7/14/06 4:21 PM Page 222

Reading and Writing XML
The uses of and differences between DOM implementations often reflect the styles of the program-
ming language. We will explore a few parsing modules here, just to put the XML discussion into the
context of actual code and provide a sense of XML processing with different languages.

Xerces C++
BDB XML uses (and includes) the Apache project’s Xerces C++ XML parser. Xerces is a rather straight-
forward processor supporting the DOM specification, namespaces, and XML schema. It doesn’t do
XPath; it focuses instead on the core XML processing and lets related projects such as Apache Xalan
tackle XPath. Xerces has parsers in Java as well, with Perl and COM bindings for the C++ libraries.

Listing A-1 omits declarations, includes, and error handling; it highlights the DOM method calls.

Listing A-1. A C++ DOM Browse with Xerces

static char* elementname = "Word";
static char* gXmlFile = "12.xml";

int main() {
XMLPlatformUtils::Initialize();
XercesDOMParser *parser = new XercesDOMParser;
parser->parse(gXmlFile);

// get the DOM representation
DOMNode *doc = parser->getDocument();
DOMNode *element = doc->getFirstChild();
DOMNodeList *nodelist = element->getChildNodes();

for(int i=0; i < nodelist->getLength(); ++i) {
DOMNode *child = nodelist->item(i);
if (XMLString::compareString(child->getNodeName(),

XMLString::transcode(elementname)) == 0) {
DOMNode *text = child->getFirstChild();
printf ("%s: %s\n",

XMLString::transcode(child->getNodeName()),
XMLString::transcode(text->getNodeValue())

);
}

}

// clean up
delete parser;
XMLPlatformUtils::Terminate();
return 0;

}

The file 12.xml has the following abbreviated content, which you might recognize from
Chapter 2:

<Synset fileVersion="1.0" pos="n">
<Id>12</Id>
<WnOffset version="2.1" pos="n">00004576</WnOffset>
<LexFileNum>03</LexFileNum>
<SsType>n</SsType>
<Word lexId="0">organism</Word>
<Word lexId="0">being</Word>

</Synset>

APPENDIX A ■ XML ESSENTIALS 223

6668appa.qxd 7/14/06 4:21 PM Page 223

Compiled (with the necessary header includes) and run, this listing outputs the following result:

Word: organism
Word: being

This is an example of a pure DOM parse without XPath. Of course, it can be cumbersome to
navigate a document with the DOM if you don’t know what it contains. It’s made easier with Xerces
filters that can be registered to act as node handlers.

Perl’s XML::LibXML
The Perl XML::LibXML module, available from the Comprehensive Perl Archive Network (CPAN—
http://www.cpan.org), embeds the libxml2 C libraries. Its DOM classes are XML::LibXML::Document,
XML::LibXML::Element, and so on. Given Perl’s strength at parsing, it makes a good choice for con-
verting data to XML. Its sister, XML::LibXSLT (embedding libsxlt), enables XSLT processing on the
same DOM objects.

Chapter 2 discussed a conversion of the Wordnet database to XML files. Recall that the desired
format looked like this:

<Synset fileVersion="1.0" pos="n">
<Id>14861</Id>
<WnOffset version="2.1" pos="n">02772480</WnOffset>
<LexFileNum>06</LexFileNum>
<SsType>n</SsType>
<Word lexId="0">baseball</Word>
<Pointers>

<Hypernym>14746</Hypernym>
<Hypernym>14866</Hypernym>

</Pointers>
<Gloss>a ball used in playing baseball</Gloss>

</Synset>

In the truncated script example shown in Listing A-2, the parsing functions are removed, and
the document operations are highlighted. This listing should be fairly straightforward, assuming
that the Perl method call operator (->) is familiar to you.

Listing A-2. Building XML with the Perl Module XML::LibXML

#!/usr/bin/perl -w
use strict;
use XML::LibXML;

open my $file, "data.noun";
my $id = 1;

iterate each line (synset) in the file
while (my $line = <$file>) {

create the DOM object for the synset
my $document = XML::LibXML::Document->new("1.0", "UTF8");

create a new element, set its attribute
my $element = $document->createElement("Synset");
$element->setAttribute("fileVersion", "1.0");

APPENDIX A ■ XML ESSENTIALS224

6668appa.qxd 7/14/06 4:21 PM Page 224

read the offset and create an element for it
my $offset = extract_offset($line);
my $offset_element = $document->createElement("WnOffset");
$offset_element->appendText($offset);

set attributes for version and pos ("part-of-speech")
my $wn_version = "2.1";
$offset_element->setAttribute("version", $wn_version);
my $pos = extract_pos($line);
$offset_element->setAttribute("pos", $pos);

make the offset element a child of our synset element
$element->appendChild($offset_element);
...

set the root element for the document
$document->setDocumentElement($element);

increment the id, and write the file
open my $newfile, ">" . $id++ . ".xml";
print $newfile $document->toString();
close $newfile;

}

The result is a single XML file, starting with 1.xml, for each line in the data file. In this case, the
result is about 120,000 XML files, each complying with the format created in this script. You could
write an XML schema to describe this format and ensure that the DOM usage is correct. If you ran
this script, you'd have a decent collection of XML documents containing interesting data. I use this
data in examples throughout the rest of the book.

Parsing the file with XML::LibXML is simple, and it provides a full-featured XPath (1.0) imple-
mentation (see Listing A-3).

Listing A-3. Parsing a File in Perl with XML::LibXML

#!/usr/bin/perl -w
use strict;
use XML::LibXML;

my $parser = new XML::LibXML;
my $document = $parser->parse_file("12.xml");
foreach my $node ($document->findnodes("/Synset/Word")) {

print "Word: " . $node->to_literal . "\n";
}

This listing outputs the following result:

Word: organism
Word: being

Recall that the resulting XML files contain pointers to the other files. These numbers are the
incremented $id; the script created an index of offset-to-ID mappings. Most XPath implementations
provide a standard document() function, which enables the processor to dynamically load XML files.
For example, this XPath queried against a node takes the first /Synset/Pointers/Hyponym element,

APPENDIX A ■ XML ESSENTIALS 225

6668appa.qxd 7/14/06 4:21 PM Page 225

concatenates it with ".xml" to get the filename for the record, opens the file with the document()
function, and selects the /Synset/Word node:

document(concat(/Synset/Pointers/Hyponym[1], ".xml"))/Synset/Word

This XPath expression placed in place of /Synset/Word in the previous code example causes the
script to output this result:

Word: benthos

Thus, the first hyponym or “kind of” organism type listed in the lexicon is benthos, which is
an organism at the bottom of the sea. Other hyponym pointers in 12.xml include plant, plankton,
parasite, mutant, and animal (the lexicon section in which human is located).

Other XML Technologies
XML dialects have been developed (and often standardized) for nearly every conceivable field,
including genealogy, astronomy research, and even music. Each dialect, although it is valid XML,
requires that applications know and understand that dialect—usually as it is described via an XML
schema.

XSLT
Translating from one XML dialect to another is useful in many situations, not least of all in trans-
forming XML to HTML. XSLT is a very popular technology for doing this. XSLT is actually written
in XML, meaning that it can process and output itself! XSLT templates are declarative. Instead of a
procedural language that tells the program what to do and in what order, declarative languages cre-
ate functions with conditions. If you imagine that your entire program consists of procedural case
statements, you aren’t far from declarative programming. Declarative programming can be especially
useful when dealing with semantically rich data such as XML. For example, here is the baseball XML
source, file 14861.xml:

<Synset fileVersion="1.0" pos="n">
<Id>14861</Id>
<WnOffset version="2.1" pos="n">02772480</WnOffset>
<LexFileNum>06</LexFileNum>
<SsType>n</SsType>
<Word lexId="0">baseball</Word>
<Pointers>

<Hypernym>14746</Hypernym>
<Hypernym>14866</Hypernym>

</Pointers>
<Gloss>a ball used in playing baseball</Gloss>

</Synset>

■Note At this time. XSLT 2.0 is approaching a final recommendation. Note that this section describes XSLT 1.0,
and the specification is changing significantly in the new version.

An XSLT document could transform this into another XML dialect, as well as a non-XML for-
mat. Rules get created for each piece of data that needs to be transformed. For example, suppose

APPENDIX A ■ XML ESSENTIALS226

6668appa.qxd 7/14/06 4:21 PM Page 226

that you want to output an HTML page to display this and every other synset XML file. Each piece
gets its own XSLT template in the following form:

<xsl:template match="/Synset">
<p>This is synset number <xsl:value-of select="Id"/>.</p>

</xsl:template>

Notice that the HTML elements have no namespace, but the XSLT elements all use the xsl
namespace prefix. All templates get enclosed in a single stylesheet element:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:template match="/Synset">

<p>This is synset number <xsl:value-of select="Id"/>.</p>
</xsl:tempate>

</xsl:stylesheet>

If you save this stylesheet as synset.xsl and execute the transformation, it outputs this result:

<?xml version="1.0"?>
<p>This is synset number 14861.</p>

■Note You can execute XSLT transformations from the command line with libxslt installed. The utility is called
xsltproc and its syntax is as follows:

$ xsltproc synset.xsl 14861.xml

Notice the attributes on the <xsl:template/> and <xsl:value-of/> elements in the template.
One has a match attribute, and the other has select—both with an XPath expression for value. The
match attribute registers the template with the XSLT engine and says, “As you parse the XML file,
when you encounter a node that matches XPath /Synset, use this template.” The select attribute
on <xsl:value-of/> tells the engine to output the value of the selected node, using the current node
as context. The current node within this template is /Synset, so the selected Id is its child element.

You could achieve the same output with two templates instead of one:

<xsl:template match="/Synset">
<xsl:apply-templates select="Id"/>

</xsl:template>

<xsl:template match="Id">
<p>This is synset number <xsl:value-of select="."/>.</p>

</xsl:tempate>

The <xsl:apply-templates/> element tells the processor to keep going—to continue to apply
templates to the children of the current node (or just the child indicated by its select attribute). All
the Id template does here is output the value of the current node, which is the Id element in the
second template.

Without explaining every XSLT element, Listing A-4 shows the file synset.xsl filled out with
several templates. It also shows some of the power of XPath used within a stylesheet.

Listing A-4. XSLT Stylesheet synset.xsl

<xsl:template match="Gloss">
<p>Gloss: <xsl:value-of select="."/></p>

</xsl:template>

APPENDIX A ■ XML ESSENTIALS 227

6668appa.qxd 7/14/06 4:21 PM Page 227

<xsl:template match="Pointers">
<p>Synset has the following pointers:</p>
<p><xsl:apply-templates/></p>

</xsl:template>

<xsl:template match="Hypernym">
<p>This is a kind of

<xsl:value-of select="document(concat(., '.xml'))/Synset/Word"/

>.

</p>
</xsl:template>

<xsl:template match="*">
<!-- catch the rest of the elements and put them in comments -->
<xsl:comment><xsl:value-of select="."/></xsl:comment>

</xsl:template>

</xsl:stylesheet>

Applied to 14861.xml, the output is the following:

<html><body>
<p>This is synset number 14861.</p>
<!--02772480-->
<!--06-->
<!--n-->
<p>Word:baseball</p>
<p>Synset has the following pointers:</p>
<p>This is a kind of

ball.
</p>

<p>This is a kind of
baseball equipment.
</p>

</p>
<p>Gloss:a ball used in playing baseball </p>

</body></html>

Viewed in a web browser, this listing displays details on the synset and also enables the user to
navigate to the hypernym synset files. Setting up a handler in your web server to apply stylesheets
to an associated XSLT stylesheet is trivial, and some web browsers can do this transformation all on
their own.

A Note on Current Node
Within applications such as XSLT and where processing is context-aware (for example, inside a
predicate), it is often necessary to refer explicitly to the current node. The solution is to use the XSLT
XPath function current(). In most cases, current() and . are equivalent:

<xsl:value-of select="current()"/>
<xsl:value-of select="."/>

APPENDIX A ■ XML ESSENTIALS228

6668appa.qxd 7/14/06 4:21 PM Page 228

However, the current node is usually different from the context node within a predicate. Con-
sider the case when, inside a template, you want to select a node using a value from your context.
For example, let’s say that you are inside a template processing a Word element and you want to
know whether the Gloss for this record contains that word:

<xsl:template match="Word">
<xsl:value-of select="../Gloss[contains(., .)]"/>

</xsl:template>

Using . twice is obviously incorrect. In this case, the contains() function is getting Gloss as
both arguments, meaning it will always be a true test (Gloss contains itself). You want Gloss to be
the first argument, but the current node, Word, to be the second. The current() function does this,
which always returns the current node:

<xsl:template match="Word">
<xsl:value-of select="../Gloss[contains(., current())]"/>

</xsl:template>

Because current() returns a node set (albeit with only one member), it can precede a path (as
with current()/Word/text()) or be used alone to get just the current node.

SAX
Simple API for XML (SAX) is a standard for parsing XML. A SAX processor does not have to parse
the entire file or store it in memory. SAX is event-driven, so a parser triggers functions each time it
encounters a new element, attribute, and so on. As it happens, most DOM implementations use a
SAX parser to generate a node tree. Thus, SAX can be considered a lower-level parse interface, which
is the reason why it is faster and more efficient than DOM.

RPC-XML and SOAP
Remote procedure calls (RPCs) enable software to request information and perform operations
non-locally. If you aren’t familiar with RPCs and have the need to allow a client’s website to submit
orders to your website without human intervention, for example, you might write a script to run on
the client’s website that accepts a posted order form, connects to your website, fills in the form, and
submits the form. Consider the problems with this process. If the web page or form input names
ever change (which they are likely to do), your client’s orders will no longer work and might get lost.
And using a user interface from a program just to move data from one place to another is horribly
inelegant.

A better way to move data to—and request actions from—another system is to use RPCs. Most
programming languages have RPC-XML or Simple Object Access Protocol (SOAP) modules. If you
will be providing the functionality, you write a response function to run on the server. If you need to
access the server, you write a requestor function. Using one of these modules, you don’t need to
write any code to connect to the server, perform the request, or parse the response because it is all
handled automatically. In fact, a developer working with an interface that uses RPC-XML or SOAP
might have no idea that a given method call is occurring remotely at all. Functionality that is avail-
able via an RPC server is often referred to as a Web Service because it is accessed over HTTP and
provides information or function services to other software programs.

RPC-XML is an example of a technology in which the XML is invisible to the developer. You
might not even know that the function calls are exchanging XML. The point of RPCs is that you don’t
need to know how data is being moved between systems, enabling you to focus instead on the func-
tionality. XML as a standard is the perfect format for transmitting RPC data because the methods
are often operating between programs in different programming languages or operating systems.

APPENDIX A ■ XML ESSENTIALS 229

6668appa.qxd 7/14/06 4:21 PM Page 229

Because all can process XML, they all understand the data. You will find this to be true with much
of XML: after programs are enabled to process the data autonomously, developers can worry less
about minutiae such as data formats. XML serves no end in and of itself; it simply makes the for-
matting and parsing of data transparent to software built on top of it.

Conclusion
From a simple foundation of tags built from greater-than and less-than signs, XML has standard-
ized data formats, enabling dozens or hundreds of technologies to be designed and standardized.
In many ways, Berkeley DB XML represents a major culmination of these technologies, providing
everyone the capability to manage huge collections of XML files. The power of this capability won’t
be clear until you delve into BDB XML itself.

APPENDIX A ■ XML ESSENTIALS230

6668appa.qxd 7/14/06 4:21 PM Page 230

BDB XML API Reference

This appendix contains a slightly abbreviated reference of common API functions for C++, Python,
Java, Perl, and PHP. Each class and method is first described generally; it is then accompanied by
either header or pseudo-usage code for common method variants to illustrate the parameters
accepted. Where the possible usages are lengthy, only several are included, illustrating the range of
parameters. Remember that not all variants accept all parameters, and specific usage behavior might
differ. Please refer to the BDB XML documentation at http://dev.sleepycat.com/documentation/
bdbxml.html for up-to-date and comprehensive descriptions of all API features. Documentation for
most APIs is also included within the BDB XML distribution.

Throughout this section, parameters are defined only once for all languages unless they differ
for a specific language’s API. Perl and PHP usage examples add a dollar sign ($) before the parame-
ters, but parameter lists omit the sign. Note that each API has slightly different prefix requirements
for the flags; they are described in the language notes section that follows. The double colon (::) is
used as a common convention in this appendix to separate methods and classes in their description.

Language Notes
This section describes some API-specific implementation details.

C++
C++ is the API used by all other language APIs, so it is authoritative. The other APIs attempt to pro-
vide idiomatic interfaces to many of the C++ functions. Exception handling is fully supported and
described in Chapter 8, “BDB XML with C++.” The main C++ classes implement a handle-body
idiom, enabling objects to be copied while maintaining a reference to the same body; the exception
to this rule is XmlInputStream. See the BDB XML documentation for details about which classes can
be safely shared among threads in an application.

The C++ headers are included with the following:

#include "dbxml/DbXml.hpp"

Bitwise OR’d flags are supplied to methods, as shown in the flag tables in each method’s section.

Java
Like C++, exception handling is supported (as described in Chapter 10, “BDB XML with Java”).
Refer to the BDB XML documentation for details about which classes can be safely shared between
threads. All Java packages can be loaded with the following:

import com.sleepycat.dbxml.*;

231

A P P E N D I X B

6668appb.qxd 7/18/06 2:37 PM Page 231

BDB XML objects must usually be explicitly deleted when using the Java API and they all include
a delete() method for this purpose. Otherwise, garbage collection might not properly free them,
resulting in memory issues and possible stale references to objects. The delete() method is also the
proper way to close containers.

The main Java classes implement a handle-body idiom, enabling objects to be copied while
maintaining a reference to the same body; the exception to this rule is XmlInputStream.

Finally, where the other APIs use flags to determine settings for most object methods, the Java
API provides configuration objects that are described separate from the method sections. Refer to
the class documentation for individual Config classes.

Python
The Python API does not yet provide exception handling. BDB XML and Berkeley DB modules are
loaded with the following:

from bsddb3.db import *
from dbxml import *

The Python interface closes containers automatically when they leave scope.
Where used, method flags are supplied to methods as shown, bitwise OR’d as with the C++

interface.

Perl
The Perl API supports exception handling using eval { }; blocks, as described in Chapter 11, “BDB
XML with Perl.” The Perl packages are imported with the following, where 'simple' causes transac-
tion objects to be optional where they might be provided:

use Sleepycat::DbXml 'simple';

In most places where XmlValue objects are used, the Perl interface enables scalars to be used
instead.

The Perl API uses object scope to implicitly close open containers.
Finally, note that the Perl interface typically requires that flags passed to methods have a quali-

fying prefix: Db:: for Berkeley DB flags (for the environment object) and DbXml:: for BDB XML flags
(for everything else). These are bitwise OR’d as with the C++ API.

PHP
The PHP interface does not yet implement exception handling. The BDB XML package is loaded
into the processor using the php.ini configuration file.

The PHP unset() function is the proper way to close containers and free memory.
Where BDB XML methods accept setting flags, they are supplied as shown, bitwise OR’d as with

the C++ API.
Where constants are used to identify types (such as XmlContainer::WholedocContainer) as

arguments to methods, the PHP interface replaces the namespace delimiter with an underscore (as
with XmlContainer_WholedocContainer).

DbEnv
DbEnv is the Berkeley DB database environment class and is not specific to BDB XML. It is passed
to the XmlManager constructor and provides methods for opening, closing, creating, and removing

APPENDIX B ■ BDB XML API REFERENCE232

6668appb.qxd 7/18/06 2:37 PM Page 232

environments (as well as low-level configuring of environment settings). This class differs greatly
between the APIs, so each is described individually in the following sections.

DbEnv (Constructor)
See the BDB XML documentation for flag definitions; they are atypical for this constructor where a
0 can be passed.

C++

class DbEnv {
public:
DbEnv(u_int32 flags);

};

Java
Unlike the other APIs, the Java environment object gets the path to the environment with the con-
structor and uses a configuration object to set options that other APIs set with the open() method.

public Environment (File envHome, EnvironmentConfig envConfig)

Python

DBEnv(flags=0)

Perl

my $env = new DbEnv([$flags]);

PHP
The PHP API uses the Db4Env package as its interface to environments:

$env = new Db4Env($flags);

DbEnv::open
The open() method takes a directory path to the environment, a set of bitwise OR’d flags, and a Unix
file mode (ignored on Windows). All parameters are optional. Following are some of the available
environment flags:

Flag Description

DB_CREATE Creates the environment if it doesn’t already exist.

DB_INIT_LOCK Initializes the locking subsystem; used with concurrent reads and
writes.

Continued

APPENDIX B ■ BDB XML API REFERENCE 233

6668appb.qxd 7/18/06 2:37 PM Page 233

Flag Description

DB_INIT_LOG Initializes the logging subsystem; used for database recovery.

DB_INIT_MPOOL Initializes the memory pool subsystem, providing a cache required for
multithreaded applications.

DB_INIT_TXN Initializes the transaction subsystem, permitting recovery in case of an
error condition within a transaction.

DB_RECOVER Initializes recovery, ensuring that the database files agree with the
database logs.

C++
int DbEnv::open(const char *db_homedir, u_int32_t flags, int mode)

Java
The Java API does not provide an open() method; environments are opened using the constructor.

Python
DBEnv.open(homedir, flags=0, mode=0660)

Perl
Remember that the Perl interface here requires a Db:: prefix before bitwise OR’d flags.

$env->open($homedir, $flags, $mode);

PHP
The PHP environment object is unique in that its open() method has defaults for flags and mode.
The flag default is DB_INIT_TXN|DB_INIT_LOG|DB_INIT_MPOOL|DB_INIT_LOCK|DB_CREATE, and the
mode default is 0666.

$env->open([$homedir,] [$flags,] [$mode]);

DbEnv::close
Closes the environment and underlying subsystems; frees any allocated resources. The flags field is
unused at this time and must be 0 unless defaulted for a particular language.

C++
DbEnv::close(u_int32_t flags)

APPENDIX B ■ BDB XML API REFERENCE234

6668appb.qxd 7/18/06 2:37 PM Page 234

Java
The delete() method is the proper way to close an environment, although this class provides a
close() method.

public void close()

Python
DBEnv.close(flags=0)

Perl
$env->close($flags);

PHP
$env->close($flags=0);

DbXml
This constructor-less class provides some utility methods for setting logging options. It is also the
namespace for all subclasses. Not all APIs provide this class, although most provide the same func-
tionality with the XmlManager class.

DbXml::setLogCategory
Sets the category for logging. Log messages are categorized by subsystem and by importance. The
messages are sent to the output stream that is configured in the Berkeley DB environment associ-
ated with the XmlManager generating the message. The output is sent to std::cerr if no environment
is associated with the XmlManager.

Parameters

category

The log category to enable or disable. Possible values are shown in the following table.

Category Description

DbXml::CATEGORY_MANAGER Manager messages

DbXml::CATEGORY_CONTAINER Container messages

DbXml::CATEGORY_INDEXER Indexer messages

DbXml::CATEGORY_QUERY Query messages

DbXml::CATEGORY_OPTIMIZER Query optimizer messages

DbXml::CATEGORY_DICTIONARY Dictionary messages

DbXml::CATEGORY_NODESTORE Node storage messages

DbXml::CATEGORY_ALL All BDB XML messages

APPENDIX B ■ BDB XML API REFERENCE 235

6668appb.qxd 7/18/06 2:37 PM Page 235

enabled

Boolean flag that specifies whether to enable or disable the level or category.

C++
void DbXml::setLogCategory(LogCategory category, bool enabled)

Java
The Java API provides the corresponding method as XmlManager.setLogCategory.

public static void setLogCategory(int category, boolean enabled)

Python
The Python API exposes this functionality as class method XmlManager.setLogCategory.

XmlManager.setLogCategory(category, enabled)

Perl
DbXml::setLogCategory($category, $enabled);

PHP
dbxml_set_log_category($category, $enabled);

DbXml::setLogLevel
Berkeley DB XML can be configured to generate a stream of messages to help application debug-
ging. The messages are categorized by subsystem and by importance. The messages are sent to the
output stream that is configured in the Berkeley DB environment associated with the XmlManager
generating the message. The output is sent to standard error if no environment is associated with
the XmlManager.

Parameters

level

The log level to enable or disable; one of those shown in the following table:

Level Description

DbXml::LEVEL_DEBUG Execution tracing messages

DbXml::LEVEL_INFO Informational messages

DbXml::LEVEL_WARNING Warning messages

DbXml::LEVEL_ERROR Fatal error messages

DbXml::LEVEL_ALL All debug levels

APPENDIX B ■ BDB XML API REFERENCE236

6668appb.qxd 7/18/06 2:37 PM Page 236

enabled

Boolean flag that specifies whether to enable or disable the level or category.

C++
void DbXml::setLogLevel(LogLevel level, bool enabled)

Java
The Java class provides the corresponding method as XmlManager.setLogLevel.

public static void setLogLevel(int level, boolean enabled)

Python
The Python API exposes this functionality as class method XmlManager.setLogCategory.

XmlManager.setLogLevel(level, enabled)

Perl
DbXml::setLogLevel($level, $enabled);

PHP
dbxml_set_log_level($level, $enabled);

DbXml::dbxml_version
Returns the Berkeley DB XML release number. Each API has a slightly different interface to this
information.

C++
void DbXml::dbxml_version(int *majorp, int *minorp, int *patchp)

Java
public static int get_version_major()
public static int get_version_minor()
public static int get_version_patch()
public static String get_version_string()

Python
DbXml.get_version_major()
DbXml.get_version_minor()
DbXml.get_version_patch()
DbXml.get_version_string()

APPENDIX B ■ BDB XML API REFERENCE 237

6668appb.qxd 7/18/06 2:37 PM Page 237

Perl

my ($major, $minor, $patch);
DbXml::dbxml_version($major, $minor, $patch);

PHP

dbxml_version();

XmlContainer
The XmlContainer class encapsulates access to a database container—its indexes and statistics. It
provides methods for managing XmlDocument objects, manipulating indexes, and retrieving statistics
for the container. You can use XmlManager::createContainer to instantiate an XmlContainer object
for a container that does not exist or XmlManager::openContainer if it has already been created.
XmlContainers are always open until the last referencing handle is destroyed.

A copy constructor and assignment operator are provided for this class, and used by passing an
existing XmlContainer to this constructor. For most APIs, the class is implemented using a handle-
body idiom. When a handle is copied, both handles maintain a reference to the same body.

XmlContainer::addAlias
Adds a new name alias to the list maintained by the containing XmlManager. The new alias can then
be used as a parameter to the collection() function in an XQuery expression. Returns true if the
alias is successfully added. If the alias is already used by the containing XmlManager object, false is
returned.

C++

bool addAlias(const std::string &alias)

Java

public boolean addAlias(String alias)

Python

XmlContainer.addAlias(alias)

Perl

my $bool = $container->addAlias($alias);

APPENDIX B ■ BDB XML API REFERENCE238

6668appb.qxd 7/18/06 2:37 PM Page 238

PHP

$bool = $container->addAlias($alias);

XmlContainer::addIndex
XmlContainer::addIndex is a convenience method (see XmlIndexSpecification::addIndex) for
adding to the container an index of the specified type for the named document node. Its various
usages allow a transaction object, a Uniform Resource Identifier (URI), an index name, an index
specification, and an update context to be passed.

Parameters

txn

If the operation is to be transaction-protected, the txn parameter is an XmlTransaction handle
returned from XmlManager::createTransaction.

uri

The namespace of the node to be indexed. The default namespace is selected by passing an empty
string for the namespace.

name

The name of the element or attribute node to be indexed.

index

A comma-separated list of strings that represent the indexing strategy. The strings must contain the
following information:

unique-{path type}-{node type}-{key type}-{syntax}

These values are detailed in the following table; order is not important.

Value Description

unique Indicates that the indexed value is unique in the container. If this keyword does
not appear on the index string, the indexed value is not required to be unique
in the container.

{path type} Either node or edge.

{node type} One of element, attribute, or metadata. If metadata is specified, {path type}
must be node.

{key type} One of presence, equality, or substring.

{syntax} Identifies the type of information being indexed. It must be one of the following
values: none, anyURI, base64Binary, boolean, date, dateTime, dayTimeDuration,
decimal, double, duration, float, gDay, gMonth, gMonthDay, gYear, gYearMonth,
hexBinary, NOTATION, QName, string, time, yearMonthDuration, or untypedAtomic.
See the BDB XML documentation for full descriptions of the types.

APPENDIX B ■ BDB XML API REFERENCE 239

6668appb.qxd 7/18/06 2:37 PM Page 239

Note that if {key type} is present, {syntax} must be none or simply not specified. Some example
index strings are as follows:

unique-node-element-presence
node-element-equality-string
edge-element-presence-none
node-metadata-equality-dateTime
node-attribute-equality-float

context

The update context (XmlUpdateContext) to use for the index insertion.

C++

void XmlContainer::addIndex(const std::string &uri, const std::string &name,
const std::string &index, XmlUpdateContext &context)

XmlContainer::addIndex(XmlTransaction &txn, const std::string &uri,
const std::string &name, const std::string &index, XmlUpdateContext &context)

Java

public void addIndex([XmlTransaction txn,] String uri, String name, String index,
XmlUpdateContext context)

Python

XmlContainer.addIndex([txn,] uri, name, index [, context])

Perl
Remember that transaction objects are optional for the Perl interface only when simple is used to
load the class package.

$container->addIndex([$txn,] $uri, $name, $index [, $context]);

PHP

$container->addIndex([$txn,] $uri, $name, $index [, $context]);

XmlContainer::addDefaultIndex
Adds a default index to the container. This method is for convenience; see XmlIndexSpecification::
addDefaultIndex.

APPENDIX B ■ BDB XML API REFERENCE240

6668appb.qxd 7/18/06 2:37 PM Page 240

Parameters

txn

If the operation is to be transaction-protected, the txn parameter is an XmlTransaction handle
returned from XmlManager::createTransaction.

index

A comma-separated list of strings that represent the indexing strategy. See the parameter descrip-
tion for XmlContainer::addIndex for the options and syntax.

context

The update context (XmlUpdateContext) to use for the index operation.

C++

void XmlContainer::addDefaultIndex(const std::string &index,
XmlUpdateContext &context)

XmlContainer::addDefaultIndex(XmlTransaction &txn, const std::string &index,
XmlUpdateContext &context)

Java

public void addDefaultIndex([XmlTransaction txn,] String index,
XmlUpdateContext context)

Python

XmlContainer.addDefaultIndex([txn,] index, context)

Perl

$container->addDefaultIndex([$txn,] $index [, $context]);

PHP

$container->addDefaultIndex([$txn,] $index [, $context]);

XmlContainer::deleteDocument
The XmlContainer::deleteDocument method removes the specified XmlDocument from the
XmlContainer. The document can be specified with a string name or an XmlDocument object. Note
that the XmlDocument’s name is used for this operation, and no check is performed on the docu-
ment contents prior to deletion.

APPENDIX B ■ BDB XML API REFERENCE 241

6668appb.qxd 7/18/06 2:37 PM Page 241

Parameters

txn

An XmlTransaction handle returned from XmlManager::createTransaction.

name

The name of the XmlDocument to be deleted from the container.

document

The XmlDocument to be deleted from the container.

context

The XmlUpdateContext object to use for this deletion.

C++

void XmlContainer::deleteDocument(const std::string name, XmlUpdateContext &context)
void XmlContainer::deleteDocument(XmlDocument &document, XmlUpdateContext &context)
void XmlContainer::deleteDocument(XmlTransaction &txn, const std::string name,

XmlUpdateContext &context)
void XmlContainer::deleteDocument(XmlTransaction &txn,

XmlDocument &document, XmlUpdateContext &context)

Java

public void deleteDocument([XmlTransaction txn,] String name,
XmlUpdateContext context)

public void deleteDocument([XmlTransaction txn,] XmlDocument document,
XmlUpdateContext context)

Python

XmlContainer.deleteDocument([txn,] name, context)
XmlContainer.deleteDocument([txn,] document, context)

Perl

$container->deleteDocument([$txn,] $name [, $context]);
$container->deleteDocument([$txn,] $document [, $context]);

PHP

$container->deleteDocument([$txn,] $name [, $context]);
$container->deleteDocument([$txn,] $document [, $context]);

APPENDIX B ■ BDB XML API REFERENCE242

6668appb.qxd 7/18/06 2:37 PM Page 242

XmlContainer::deleteIndex
Deletes an index of the specified type for the named document node. This method is for convenience;
see XmlIndexSpecification::deleteIndex for more information. Note that an index description is
always required to identify an index for the container.

Parameters

txn

An XmlTransaction handle returned from XmlManager::createTransaction.

uri

The namespace of the node to be indexed. The default namespace is selected by passing an empty
string for the namespace.

name

The name of the element or attribute node to be indexed.

index

A comma-separated list of strings that represent the indexing strategy. See the index description in
the parameter list for XmlContainer::addIndex for the full options and syntax.

content

The XmlUpdateContext to use for this operation.

C++

void XmlContainer::deleteIndex(const std::string &uri, const std::string &name,
const std::string
&index, XmlUpdateContext &context)

void XmlContainer::deleteIndex(XmlTransaction &txn, const std::string &uri,
const std::string &name,
const std::string &index, XmlUpdateContext &context)

Java

public void deleteIndex([XmlTransaction txn,] String uri, String name, String index,
XmlUpdateContext context)

Python

XmlContainer.deleteIndex([txn,] uri, name, index, context)

APPENDIX B ■ BDB XML API REFERENCE 243

6668appb.qxd 7/18/06 2:37 PM Page 243

Perl

$container->deleteIndex([$txn,] $uri, $name, $index [, $context]);

PHP

$container->deleteIndex([$txn,] $uri, $name, $index [, $context]);

XmlContainer::deleteDefaultIndex
Deletes the default index for the container. This method is for convenience; see
XmlIndexSpecification::deleteDefaultIndex for more information.

Parameters

txn

An XmlTransaction handle returned from XmlManager::createTransaction.

index

A comma-separated list of strings that represent the indexing strategy. See the index description in
the parameter list for XmlContainer::addIndex for the full options and syntax.

context

The XmlUpdateContext to use for this operation.

C++

void XmlContainer::deleteDefaultIndex(const std::string &index, XmlUpdateContext &
context)

void XmlContainer::deleteDefaultIndex(XmlTransaction &txn, const std::string &index,
XmlUpdateContext &context)

Java

public void deleteDefaultIndex([XmlTransaction txn,] String index, XmlUpdateContext
context)

Python

XmlContainer.deleteDefaultIndex([txn,] index, context)

Perl

$container->deleteDefaultIndex([$txn,] $index [, $context]);

APPENDIX B ■ BDB XML API REFERENCE244

6668appb.qxd 7/18/06 2:37 PM Page 244

PHP

$container->deleteDefaultIndex([$txn,] $index [, $context]);

XmlContainer::getAllDocuments
Returns all documents in the container in a lazily evaluated XmlResult set.

Parameters

txn

An XmlTransaction handle returned from XmlManager::createTransaction.

flags

Possible flags are shown in the following table:

Flag Description

DBXML_LAZY_DOCS Retrieves the document lazily, copying document content and
metadata to memory only as needed. Defaults to on with
getAllDocuments.

DB_RMW Acquires write locks instead of read locks, avoiding deadlocks during
concurrent read-modify-write cycles.

DBXML_REVERSE_ORDER Returns results in reverse order to the index’s sort.

DB_DEGREE_2 Returns results that might include items that have been deleted or
modified by other transactions before this transaction completes; also
known as “degree 2 isolation”. In Berkeley DB 4.4 and later, this flag is
called DB_READ_COMMITTED.

DB_DIRTY_READ Returns result items that might be modified by other transactions, but
that are not yet committed; also known as “degree 1 isolation”. Starting
with Berkeley DB 4.4 and later, this flag is called DB_READ_UNCOMMITTED.
Requires that the underlying container be opened using the
DB_DIRTY_READ flag.

C++

XmlResults XmlContainer::getAllDocuments(u_int32_t flags)
XmlResults XmlContainer::getAllDocuments(XmlTransaction &txn, u_int32_t flags)

Java
This and other Java methods use configuration objects instead of bitwise OR’d flags; see the refer-
ence for XmlDocumentConfig.

public XmlResults getAllDocuments([XmlTransaction txn,] XmlDocumentConfig config)

APPENDIX B ■ BDB XML API REFERENCE 245

6668appb.qxd 7/18/06 2:37 PM Page 245

Python

XmlContainer.getAllDocuments([txn,] flags)

Perl

my $results = $container->getAllDocuments([$txn,] $flags);

PHP

$results = $container->getAllDocuments([$txn,] $flags);

XmlContainer::getContainerType
Returns the container’s type. Possible return values are XmlContainer::NodeContainer, where docu-
ments are broken down into their component nodes and these nodes are stored individually in the
container; and XmlContainer::WholedocContainer, where documents are stored intact—all white
space and formatting are preserved.

C++

ContainerType XmlContainer::getContainerType() const

Java

public int getContainerType()

Python

XmlContainer.getContainerType()

Perl

my $type = $container->getContainerType();

PHP

$type = $container->getContainerType();

XmlContainer::getDocument
Returns the XmlDocument with the specified name.

APPENDIX B ■ BDB XML API REFERENCE246

6668appb.qxd 7/18/06 2:37 PM Page 246

Parameters

txn

An XmlTransaction handle returned from XmlManager::createTransaction.

name

The name of the XmlDocument to be retrieved from the container.

flags

This parameter must be set to 0 or to one of the values shown in the following table:

Flag Description

DBXML_LAZY_DOCS Retrieves the document lazily, copying document content and metadata
to memory only as needed.

DBXML_DIRTY_READ Causes the operation to support “degree 1 isolation”; read operations
can return data that has been modified but not committed by other
transactions. Requires that the DB_DIRTY_READ flag be set when the
container opens. This flag is renamed DB_READ_UNCOMMITTED in Berkeley
DB 4.4 and later.

DB_DEGREE_2 Causes the operation to have “degree 2 isolation”. Data items previous
read by the transaction can be deleted or modified by other transactions
before this one completes. This flag is renamed DB_READ_COMMITTED in
Berkeley DB 4.4 and later.

DB_RMW Acquires write locks instead of read locks, avoiding deadlocks during
concurrent read-modify-write cycles.

C++

XmlDocument getDocument(const std::string &name, u_int32_t flags = 0)
XmlDocument getDocument(XmlTransaction &txn, const std::string &name,

u_int32_t flags = 0)

Java

public XmlDocument getDocument([XmlTransaction txn,] String name,

[XmlDocumentConfig config])

Python

XmlContainer.getDocument([txn,] name, flags = 0)

Perl

my $document = $container->getDocument([$txn,] $name [, $flags]);

APPENDIX B ■ BDB XML API REFERENCE 247

6668appb.qxd 7/18/06 2:37 PM Page 247

PHP

$document = $container->getDocument([$txn,] $name [, $flags]);

XmlContainer::getIndexNodes
Returns true if the container is configured to create node indexes.

C++

bool XmlContainer::getIndexNodes() const

Java

public boolean getIndexNodes()

Python

XmlContainer.getIndexNodes()

Perl

my $bool = $container->getIndexNodes();

PHP

$bool = $container->getIndexNodes();

XmlContainer::getIndexSpecification
Retrieves the current indexing specification for the container. The indexing specification can be
modified using XmlContainer::setIndexSpecification. See the XmlIndexSpecification class.

Parameters

txn

If the operation is to be transaction-protected, the txn parameter is an XmlTransaction handle
returned from XmlManager::createTransaction.

flags

This parameter must be set to one of the values shown in the following table:

APPENDIX B ■ BDB XML API REFERENCE248

6668appb.qxd 7/18/06 2:37 PM Page 248

Flag Description

DB_RMW Acquires write locks instead of read locks when doing the retrieval.
Setting this flag can eliminate deadlock during a read-modify-write
cycle by acquiring the write lock during the read part of the cycle so
that another thread of control acquiring a read lock for the same item,
in its own read-modify-write cycle, will not result in deadlock.

C++

XmlIndexSpecification XmlContainer::getIndexSpecification()
XmlIndexSpecification XmlContainer::getIndexSpecification(XmlTransaction &txn,

u_int32_t flags = 0)

Java

public XmlIndexSpecification getIndexSpecification([XmlTransaction txn,]
[XmlDocumentConfig config])

Python

XmlContainer.getIndexSpecification([txn,] [flags=0])

Perl

my $indexSpec = $container->getIndexSpecification([$txn, [$flags]]);

PHP

$indexSpec = $container->getIndexSpecification([$txn, [$flags]]);

XmlContainer::getManager
Returns the XmlManager object for the XmlContainer.

C++

XmlManager &XmlContainer::getManager() const

Java

public XmlManager getManager()

APPENDIX B ■ BDB XML API REFERENCE 249

6668appb.qxd 7/18/06 2:37 PM Page 249

Python

XmlContainer.getManager()

Perl

my $manager = $container->getManager();

PHP

$manager = $container->getManager();

XmlContainer::getName
The XmlContainer::getName method returns the name of the XmlContainer.

C++

const std::string &XmlContainer::getName() const

Java

public String getName()

Python

XmlContainer.getName()

Perl

my $name = $container->getName();

PHP

$name = $container->getName();

XmlContainer::getNumDocuments
Returns the number of documents in the XmlContainer.

APPENDIX B ■ BDB XML API REFERENCE250

6668appb.qxd 7/18/06 2:37 PM Page 250

C++

size_t XmlContainer::getNumDocuments() const
size_t XmlContainer::getNumDocuments(XmlTransaction &txn) const

Java

public int getNumDocuments([XmlTransaction txn])

Python

XmlContainer.getNumDocuments([txn])

Perl

my $count = $container->getNumDocuments([$txn]);

PHP

$count = $container->getNumDocuments([$txn]);

XmlContainer::getPageSize
Returns the actual database page size for the container.

C++

u_int32_t XmlContainer::getPageSize() const

Java

XmlContainer.getPageSize()

Python

XmlContainer.getPageSize()

Perl
The Perl API does not provide this method.

PHP
The PHP API does not provide this method.

APPENDIX B ■ BDB XML API REFERENCE 251

6668appb.qxd 7/18/06 2:37 PM Page 251

XmlContainer::lookupIndex
This class is deprecated in favor of using XmlManager::createIndexLookup and XmlIndexLookup::
execute.

XmlContainer::lookupStatistics
Returns an XmlStatistics object for the identified index. This object identifies the number of keys
(both total and unique) maintained for the identified index. The variants of this method enable
edge indexes to be retrieved when a parent_name parameter is supplied.

Parameters

txn

An XmlTransaction handle returned from XmlManager::createTransaction.

uri

The namespace of the node to which this index is applied.

name

The name of the node to which this index is applied.

parent_uri

The namespace of the parent node to which this edge index is applied.

parent_name

The name of the parent node to which this edge index is applied.

index

Identifies the index for which you want the statistics returned. The value supplied here must be a
valid index. See XmlContainer::addIndex or XmlIndexSpecification::addIndex for a description
of valid index specifications.

value

Provides the value to which equality indexes must be equal. This parameter is required when
returning statistics on equality indexes and it is ignored for all other types of indexes.

C++

XmlStatistics XmlContainer::lookupStatistics(const std::string &uri,
const std::string &name, const std::string &index,
const XmlValue &value = XmlValue())

XmlStatistics XmlContainer::lookupStatistics(XmlTransaction &txn,
const std::string &uri, const std::string &name,
const std::string &parent_uri, const std::string &parent_name,
const std::string &index, const XmlValue &value = XmlValue())

...

APPENDIX B ■ BDB XML API REFERENCE252

6668appb.qxd 7/18/06 2:37 PM Page 252

Java

public XmlStatistics lookupStatistics([XmlTransaction txn,] String uri, String name,
[String parent_uri,] [String parent_name,] String index, XmlValue value)

Python

XmlContainer.lookupStatistics([txn,] uri, name, [parent_uri,] [parent_name,] index,
value)

Perl

my $statistics = $container->lookupStatistics([$txn,] $uri, $name, $index [,$value]);
my $statistics = $container->lookupStatistics([$txn,] $uri, $name, $parent_uri,

$parent_name, $index [,$value]);

PHP

$statistics = $container->lookupStatistics([$txn,] $uri, $name, $index [,$value]);
$statistics = $container->lookupStatistics([$txn,] $uri, $name, $parent_uri,

$parent_name, $index [,$value]);

XmlContainer::putDocument
Inserts an XmlDocument into the container. The value returned by this method is dependent on the
form of the method that you used to perform the insertion; where a string is returned, it is the docu-
ment name.

Note that the name used for the document must be unique in the container. DBXML_GEN_NAME
can be used to generate a name. In that case, the generated name is returned. To change a docu-
ment that already exists in the container, use XmlContainer::updateDocument.

Parameters

txn

An XmlTransaction handle returned from XmlManager::createTransaction.

name

The name of the document to insert into the container.

stream

Identifies the input stream to use to read the document.

document

The XmlDocument to be inserted into the XmlContainer.

APPENDIX B ■ BDB XML API REFERENCE 253

6668appb.qxd 7/18/06 2:37 PM Page 253

contents

The XML content to insert into the container in the form of a string. The content must be well-
formed XML.

context

The update context to use for the document insertion.

flags

This parameter must be set to 0 or the following value:

Flag Description

DBXML_GEN_NAME Generates a unique name. If no name is set for this XmlDocument, a
system-defined unique name is generated. If a name is specified, the
unique string is appended to that name.

C++

void XmlContainer::putDocument(XmlDocument &document,
XmlUpdateContext &context, u_int32_t flags = 0)

void XmlContainer::putDocument(XmlTransaction &txn, XmlDocument &document,
XmlUpdateContext &context, u_int32_t flags = 0)

std::string XmlContainer::putDocument(const std::string &name,
XmlInputStream *stream,
XmlUpdateContext &context, u_int32_t flags = 0)

std::string XmlContainer::putDocument(XmlTransaction &txn, const std::string &name,
const std::string &contents, XmlUpdateContext &context, u_int32_t flags = 0)

...

Java

public void putDocument([XmlTransaction txn,] XmlDocument document,
XmlUpdateContext context, [XmlDocument config])

public String putDocument([XmlTransaction txn,] String name, XmlInputStream stream,
XmlUpdateContext context, [XmlDocument config])

public String putDocument([XmlTransaction txn,] String name, String contents,
XmlUpdateContext context, [XmlDocument config])

Python

XmlContainer.putDocument([txn,] document [, context [, flags=0]])
XmlContainer.putDocument([txn,] name, stream [, context [, flags=0]])
XmlContainer.putDocument([txn,] name, contents [, context [, flags=0]])

APPENDIX B ■ BDB XML API REFERENCE254

6668appb.qxd 7/18/06 2:37 PM Page 254

Perl

$container->putDocument([$txn,] $document [, $context [, $flags]]);
$container->putDocument([$txn,] $name, $stream [, $context [, $flags]]);
$container->putDocument([$txn,] $name, $contents [, $context [, $flags]]);

PHP

$container->putDocument([$txn,] $document [, $context [, $flags]]);
$container->putDocument([$txn,] $name, $stream [, $context [, $flags]]);
$container->putDocument([$txn,] $name, $contents [, $context [, $flags]]);

XmlContainer::removeAlias
Removes the named alias from the list maintained by the containing XmlManager. If the alias does
not exist or matches a different XmlContainer, the call fails. Return value is true upon success and
false upon failure.

C++

bool removeAlias(const std::string &alias)

Java

public boolean removeAlias(String alias)

Python

XmlContainer.removeAlias(alias)

Perl

$container->removeAlias($alias);

PHP

$container->removeAlias($alias);

XmlContainer::replaceIndex
Replaces an index of the specified type for the named document node. This method is for conven-
ience; see XmlIndexSpecification::replaceIndex.

APPENDIX B ■ BDB XML API REFERENCE 255

6668appb.qxd 7/18/06 2:37 PM Page 255

Parameters

txn

If the operation is to be transaction-protected, the txn parameter is an XmlTransaction handle
returned from XmlManager::createTransaction.

uri

The namespace of the node to be indexed. The default namespace is selected by passing an empty
string for the namespace.

name

The name of the element or attribute node to be indexed.

index

A comma-separated list of strings that represent the indexing strategy. See the index description in
the parameter list for XmlContainer::addIndex for the full options and syntax.

context

The update context to use for this operation.

C++

void XmlContainer::replaceIndex(const std::string &uri, const std::string &name,
const std::string &index, XmlUpdateContext &context)

XmlContainer::replaceIndex(XmlTransaction &txn, const std::string &uri,
const std::string &name, const std::string &index, XmlUpdateContext &context)

Java

public void replaceIndex([XmlTransaction txn,] String uri, String name,
String index, XmlUpdateContext context)

Python

XmlContainer.replaceIndex([txn,] uri, name, index, context)

Perl

$container->replaceIndex([$txn,] $uri, $name, $index [, $context]);

PHP

$container->replaceIndex([$txn,] $uri, $name, $index [, $context]);

APPENDIX B ■ BDB XML API REFERENCE256

6668appb.qxd 7/18/06 2:37 PM Page 256

XmlContainer::replaceDefaultIndex
Replaces the container’s default index. This method is for convenience—see XmlIndexSpecification::
replaceDefaultIndex for more information.

Parameters

txn

An XmlTransaction handle returned from XmlManager::createTransaction.

index

A comma-separated list of strings that represent the indexing strategy. See the index description in
the parameter list for XmlContainer::addIndex for the full options and syntax.

context

The update context to use for the index replacement.

C++

void XmlContainer::replaceDefaultIndex(const std::string &uri, const std::string &name,
const std::string &index, XmlUpdateContext &context)

XmlContainer::replaceDefaultIndex(XmlTransaction &txn, const std::string &uri,
const std::string &name, const std::string &index, XmlUpdateContext &context)

Java

public void replaceDefaultIndex([XmlTransaction txn,] String index,
XmlUpdateContext context)

Python

XmlContainer.replaceDefaultIndex([txn,] uri, name, index, context)

Perl

$container->replaceDefaultIndex([$txn,] $uri, $name, $index [, $context]);

PHP

$container->replaceDefaultIndex([$txn,] $uri, $name, $index [, $context]);

APPENDIX B ■ BDB XML API REFERENCE 257

6668appb.qxd 7/18/06 2:37 PM Page 257

XmlContainer::setIndexSpecification
Defines the type of indexing to be maintained for a container of documents. The currently defined
indexing specification can be retrieved with the XmlContainer::getIndexSpecification method.

If the container is not empty, the contained documents are incrementally indexed. Index keys
for disabled index strategies are removed, and index keys for enabled index strategies are added.
Note that the length of time taken to perform this reindexing operation is proportional to the size
of the container.

Parameters

txn

An XmlTransaction handle returned from XmlManager::createTransaction.

index

The indexing specification for the container.

context

The update context to use for the index modification.

C++

void XmlContainer::setIndexSpecification(const XmlIndexSpecification &index,
XmlUpdateContext &context)

void XmlContainer::setIndexSpecification(XmlTransaction &txn,
const XmlIndexSpecification &index, XmlUpdateContext &context)

Java

public void setIndexSpecification([XmlTransaction txn,] XmlIndexSpecification index,
XmlUpdateContext context)

Python

XmlContainer.setIndexSpecification([txn,] index, context)

Perl

$container->setIndexSpecification([$txn,] $index [, $context]);

PHP

$container->setIndexSpecification([$txn,] $index [, $context]);

APPENDIX B ■ BDB XML API REFERENCE258

6668appb.qxd 7/18/06 2:37 PM Page 258

XmlContainer::sync
Flushes database pages for the container to disk.

C++

void XmlContainer::sync() const

Java

public void sync()

Python

XmlContainer.sync()

Perl

$container->sync();

PHP

$container->sync();

XmlContainer::updateDocument
Updates an XmlDocument in the container. The document must have been retrieved from the con-
tainer using XmlContainer::getDocument, XmlManager::query, or XmlQueryExpression::execute. It is
possible to use a constructed XmlDocument object if its name is set to a valid name in the container.
The document must still exist within the container. The document content is indexed according to
the container-indexing specification, with index keys being removed for the previous document
content and added for the updated document content. Note that the effect of updateDocument is to
replace the document by name because its contents must be reindexed.

Parameters

txn

An XmlTransaction handle returned from XmlManager::createTransaction.

document

The XmlDocument to be updated in the XmlContainer.

context

The update context to use for the document insertion.

APPENDIX B ■ BDB XML API REFERENCE 259

6668appb.qxd 7/18/06 2:37 PM Page 259

C++

void XmlContainer::updateDocument(XmlDocument &document,
XmlUpdateContext &context)

void XmlContainer::updateDocument(XmlTransaction &txn,
XmlDocument &document, XmlUpdateContext &context)

Java

public void updateDocument([XmlTransaction txn,] XmlDocument document,
XmlUpdateContext context)

Python

XmlContainer.updateDocument([txn,] document, context)

Perl

$container->updateDocument([$txn,] $document [, $context]);

PHP

$container->updateDocument([$txn,] $document [, $context]);

XmlContainerConfig
This Java-only class replaces bitwise OR’d flags for container configuration. It extends the Berkeley
DB DatabaseConfig, which performs the same function for databases. Each set method has a corre-
sponding get method. This object is used as an argument to container instantiation. It is constructed
with the class constructor.

XmlContainerConfig::setAllowValidation
Sets whether documents are validated when loaded—if they refer to a Document Type Definition
(DTD) or XML schema.

Java

public XmlContainerConfig setAllowValidation(boolean value)

XmlContainerConfig::setNodeContainer
Sets whether documents’ nodes are broken down and stored individually in the container or are
stored intact with all white space and formatting. Storing nodes is preferred.

APPENDIX B ■ BDB XML API REFERENCE260

6668appb.qxd 7/18/06 2:37 PM Page 260

Java

public XmlContainerConfig setNodeContainer(boolean value)

XmlContainerConfig::setIndexNodes
Sets whether the indexer will create index targets that reference nodes rather than documents.

Java

public XmlContainerConfig setIndexNodes(boolean value)

XmlContainerConfig::setTransactional
Encloses the database open within a transaction.

Java

public void setTransactional(boolean transactional)

XmlDocument
XmlDocument is the storage unit within an XmlContainer. An XmlDocument has content, a name, and a
set of metadata attributes. Only the name is not optional.

A document’s content is a byte stream of XML and it can be get and set in multiple ways. It
must be well formed XML, but need not be valid. The document name is a unique identifier for the
document. The name is specified when the document is first placed in the container. It can either
be explicitly specified by the user or autogenerated by Berkeley DB XML. See XmlContainer::
putDocument for details.

The user can retrieve the document by name using XmlContainer::getDocument. In addition,
the document name can be referenced in an XQuery expression using the doc() navigation func-
tion. Metadata attributes enable data to be associated with a document without storing that data
within the document and are analogous to file attributes on a file system.

Empty XmlDocuments can be instantiated using the XmlManager::createDocument method.

XmlDocument::fetchAllData
If a document was retrieved using DBXML_LAZY_DOCS, document content and metadata are retrieved
from the container only on an as-needed basis. This method causes all document data and meta-
data to be retrieved (but does not return anything). Note that documents in node storage containers
are implicitly lazy.

If DBXML_LAZY_DOCS was not used to retrieve the document, use of this method has no signifi-
cant performance impact. However, if the document was retrieved lazily, repeatedly calling this
method on any given document might hurt your application’s performance.

APPENDIX B ■ BDB XML API REFERENCE 261

6668appb.qxd 7/18/06 2:37 PM Page 261

C++

void XmlDocument::fetchAllData()

Java

public void fetchAllData()

Python

XmlDocument.fetchAllData()

Perl

$document->fetchAllData();

PHP

$document->fetchAllData();

XmlDocument::getContent
Returns a reference to the document content. The returned value is owned by the XmlDocument and
is destroyed when the document is destroyed.

C++

std::string &XmlDocument::getContent(std::string &content) const
XmlData XmlDocument::getContent() const

Java

public byte[] getContent()

Python

XmlDocument.getContent([content])

Perl

my $string = $document->getContent();

APPENDIX B ■ BDB XML API REFERENCE262

6668appb.qxd 7/18/06 2:37 PM Page 262

PHP

$xmldata = $document->getContent();

XmlDocument::getContentAsDOM
Returns the document content as a Xerces Document Object Model (DOM) object. If the document
is from a node storage container, the nodes are live and retrieved on demand from the container
database. This means that nodes will not be available if the transaction in which the document was
retrieved is committed or aborted. Modifications to the DOM nodes will not be stored back to the
document unless the XmlContainer::updateDocument method is called after the modifications have
been made.

Not all Xerces DOM methods are supported by the implementation. This method is supported
only by the Berkeley DB XML C++ API. See the BDB XML and Xerces documentation for more details.

C++

xercesc_2_7::DOMDocument *XmlDocument::getContentAsDOM() const

XmlDocument::getContentAsXmlInputStream
Returns the document’s content as an XmlInputStream. The returned value is owned by the caller
and must be explicitly deleted.

C++

XmlInputStream *XmlDocument::getContentAsXmlInputStream() const

Java

public XmlInputStream getContentAsXmlInputStream()

Python

XmlDocument.getContentAsXmlInputStream()

Perl

my $stream = $document->getContentAsXmlInputStream();

PHP

$stream = $document->getContentAsXmlInputStream();

APPENDIX B ■ BDB XML API REFERENCE 263

6668appb.qxd 7/18/06 2:37 PM Page 263

XmlDocument::getMetaData
Returns the value of the specified metadata. The value of the metadata attribute can be retrieved as
a typed or untyped value. Typed values are retrieved by passing an XmlValue to the API. Untyped val-
ues are retrieved by passing an XmlData object (Dbt) through the API.

This method returns true if metadata is found for the XmlDocument that matches the given URI
and name; otherwise, it returns false.

C++

bool XmlDocument::getMetaData(const std::string &uri, const std::string &name,
XmlValue &value)

bool XmlDocument::getMetaData(const std::string &uri,
const std::string &name, XmlData &value) const

Java

public byte[] getMetaData(String uri, String name, [XmlValue value])

Python

XmlDocument.getMetaData(uri, name, value)

Perl

my $xmlvalue = new XmlValue(...);
$document->getMetaData($uri, $name, $xmlvalue);

my $string;
$document->getMetaData($uri, $name, $string);

PHP
$xmlvalue = getMetaData($uri, $name);

XmlDocument::getMetaDataIterator
Returns an XmlMetaDataIterator. Using this iterator, you can examine the individual metadata
items set for the document by looping over them using XmlMetaDataIterator::next.

C++

XmlMetaDataIterator XmlDocument::getMetaDataIterator()

Java

public XmlMetaDataIterator getMetaDataIterator()

APPENDIX B ■ BDB XML API REFERENCE264

6668appb.qxd 7/18/06 2:37 PM Page 264

Python

XmlDocument.getMetaDataIterator()

Perl

$iterator = $document->getMetaDataIterator();

PHP
This method is not provided by the PHP API.

XmlDocument::getName
The XmlDocument::getName method returns the XmlDocument name.

C++

std::string XmlDocument::getName() const

Java

public String getName()

Python

XmlDocument.getName()

Perl

my $string = $document->getName();

PHP

$string = $document->getName();

XmlDocument::removeMetaData
Removes the identified metadata from the document.

C++

void XmlDocument::removeMetaData(const std::string &uri, const std::string &name)

APPENDIX B ■ BDB XML API REFERENCE 265

6668appb.qxd 7/18/06 2:37 PM Page 265

Java

public void removeMetaData(String uri, String name)

Python

XmlDocument.removeMetaData(uri, name)

Perl

$document->removeMetaData($uri, $name);

PHP
This method is not supported by the PHP API.

XmlDocument::setContent
Sets the document’s content to the provided content string. If this document is a new document (its
name is new in the container), you can add it to a container using XmlContainer::putDocument. If
you are updating (or replacing) an already existing document, you can update the document in the
container using XmlContainer::updateDocument.

C++

void XmlDocument::setContent(const std::string &content)
void XmlDocument::setContent(const XmlData &content)

Java

public void setContent(byte [] content)

Python

XmlDocument.setContent(content)

Perl

$document->setContent($string);

PHP

$document->setContent($string);
$document->setContent($xmldata);
$document->setContent($inputstream);

APPENDIX B ■ BDB XML API REFERENCE266

6668appb.qxd 7/18/06 2:37 PM Page 266

XmlDocument::setContentAsDOM
Sets the document’s content using the provided Xerces DOM object. If this document is a new doc-
ument (its name is new in the container), you can add it to a container by using XmlContainer::
putDocument. If you are updating (or replacing) an already existing document, you can update the
document in the container using XmlContainer::updateDocument. Available only to the C++ API.

C++

void XmlDocument::setContentAsDOM(xercesc_2_7::DOMDocument *document)

XmlDocument::setContentAsXmlInputStream
Sets the document’s content using the provided input stream. If this document is new, you can add
it to a container using XmlContainer::putDocument. If you are updating an already existing docu-
ment, you can update the document in the container using XmlContainer::updateDocument.

C++

void XmlDocument::setContentAsXmlInputStream(XmlInputStream *stream)

Java

public void setContentAsXmlInputStream(XmlInputStream stream)

Python

XmlDocument.setContentAsXmlInputStream(stream)

Perl

$document->setContentAsXmlInputStream($stream);

PHP
The PHP API does not provide this method as shown; instead, the setContent() function accepts an
XmlInputStream object.

XmlDocument::setMetaData
Sets the value of the specified metadata attribute. A metadata attribute is a name-value pair, which
is stored with the document, but not as part of the document content. The value of a metadata
attribute can be typed or untyped.

A metadata attribute name consists of a namespace URI and a name. The namespace URI is
optional, but it should be used to avoid naming collisions. Typed values are passed to the API as an
instance of XmlValue and can be of any XmlValue type: Number, String, or Boolean.

APPENDIX B ■ BDB XML API REFERENCE 267

6668appb.qxd 7/18/06 2:37 PM Page 267

C++ Usage

void XmlDocument::setMetaData(const std::string &uri, const std::string &name,
const XmlValue &value)

void XmlDocument::setMetaData(const std::string &uri, const std::string &name,
const XmlData &value)

Java Usage

public void setMetaData(String uri, String name, XmlValue value);

Python Usage

XmlDocument.setMetaData(uri, name, value);
XmlDocument.setMetaData(uri, name, string);

Perl Usage

$doc->setMetaData($uri, $name, $value);
$doc->setMetaData($uri, $name, $string);

PHP Usage

$doc->setMetaData($uri, $name, $value);
$doc->setMetaData($uri, $name, $string);

XmlDocument::setName
The XmlDocument::setName method sets the name of the document. Note that when the document is
put in a container, the name that you specify must be unique; if not, you must use the DBXML_GEN_NAME
flag, or else an exception is thrown.

C++ Usage

void XmlDocument::setName(const std::string &name)

Java Usage

public void setName(String name)

Python Usage

XmlDocument.setName(name)

APPENDIX B ■ BDB XML API REFERENCE268

6668appb.qxd 7/18/06 2:37 PM Page 268

Perl Usage

$document->setName($name);

PHP Usage

$document->setName($name);

XmlDocumentConfig
This Java-only class is used in place of bitwise OR’d flags to configure operations that function on
XmlDocument objects.

XmlDocumentConfig::setGenerateName
Sets whether to automatically generate a name for the document.

Java Usage

public XmlDocumentConfig setGenerateName(boolean value)

XmlDocumentConfig::setReverseOrder
Sets whether to sort index lookups in reverse order.

Java Usage

public XmlDocumentConfig setReverseOrder(boolean value)

XmlDocumentConfig::setLockMode
Sets the lock mode for the operation. The modes are shown in the following table:

Mode Description

DEFAULT Acquires read locks for read operations and write locks for write
operations.

DEGREE_2 “Degree 2 isolation” provides for cursor stability but not repeatable reads.
In Berkeley DB 4.4 and later, this flag is named DB_READ_COMMITTED.

DIRTY_READ Reads modified but not yet committed data. In Berkeley DB 4.4 and
later, this flag is named DB_READ_UNCOMMITTED.

RMW Acquires write locks instead of read locks when doing retrieval.

APPENDIX B ■ BDB XML API REFERENCE 269

6668appb.qxd 7/18/06 2:37 PM Page 269

Java Usage

public XmlDocumentConfig setLockMode(LockMode lmode)

XmlException
Objects of this class represent a BDB XML error condition and get thrown when an API operation
results in an error (when supported by the API). It supplies methods to retrieve error details. Refer
to the API tutorial chapters (Chapters 8–12) for details on exception handling for each language.
Note that the Python and PHP APIs do not yet support exception handling.

XmlException::what
Returns a description of the exception as a string.

XmlException::getExceptionCode
Returns the exception code (ExceptionCode).

XmlException::getDbError
Retrieves the underlying Berkeley DB error code as an integer for an XmlException with exception
code DATABASE_ERROR.

XmlIndexLookup
The XmlIndexLookup class encapsulates the context within which an index lookup operation can be
performed on an XmlContainer object. The lookup is performed by using an XmlIndexLookup object
and a series of methods of that object that specify how the lookup is to be performed. Using these
methods, it is possible to specify inequality lookups, range lookups, and simple value lookups (as
well as the sort order of the results). By default, results are returned in the sort order of the index.

XmlIndexLookup objects are created using XmlManager::createIndexLookup. See the reference for
that method for more details.

XmlIndexLookup::execute
Executes the index lookup operation specified by the configuration of the XmlIndexLookup object.

C++

XmlResults results = XmlIndexLookup::execute(XmlQueryContext &context,
u_int32_t flags = 0) const

XmlResults results = XmlIndexLookup::execute(XmlTransaction &txn,
XmlQueryContext &context, u_int32_t flags = 0) const

APPENDIX B ■ BDB XML API REFERENCE270

6668appb.qxd 7/18/06 2:37 PM Page 270

Java

public XmlResul ts execute([XmlTransaction txn,] XmlQueryContext context,
[XmlDocumentConfig config])

Python

XmlIndexLookup.execute([txn,] context, flags=0)

Perl

$lookup->execute([$txn,] $context, $flags);

PHP

$lookup->execute([$txn,] [$context,] $flags);

XmlIndexLookup::setContainer
Sets the container to be used for the index lookup operation. The same XmlIndexLookup object can
be used for lookup in multiple containers by changing this configuration. All APIs provide a corre-
sponding getContainer method.

C++

void XmlIndexLookup::setContainer(XmlContainer &container)
const XmlContainer & XmlIndexLookup::getContainer() const

Java

public void setContainer(XmlContainer container)

Python

XmlIndexLookup.setContainer(container)

Perl

$lookup->setContainer($container);

PHP

$lookup->setContainer($container);

APPENDIX B ■ BDB XML API REFERENCE 271

6668appb.qxd 7/18/06 2:37 PM Page 271

XmlIndexLookup::setHighBound
Sets the operation and value to be used for the upper bound for a range index lookup operation.
The upper bound must be specified to indicate a range lookup. Each API provides an accompanying
get method for the bound and operation.

Parameters

value

A value to be used for the upper bound of an index lookup. An empty value results in an inequality
lookup.

op

The operation for the upper bound. The possible values are XmlIndexLookup::LT (less than) and
XmlIndexLookup::LTE (less than or equal to).

C++

void XmlIndexLookup::setHighBound(const XmlValue &value,
XmlIndexLookup::Operation op)

XmlIndexLookup::Operation XmlIndexLookup::getHighBoundOperation() const
const XmlValue &XmlIndexLookup::getHighBoundValue() const

Java

public void setHighBound(XmlValue value, int op)

Python

XmlIndexLookup.setHighBound(value, op)

Perl

$lookup->setHighBound($value, $op);

PHP

$lookup->setHighBound($value, $op);

XmlIndexLookup::setIndex
Sets the indexing strategy to be used for the index lookup operation. Only one index can be speci-
fied, and substring indexes are not supported. Each API provides an accompanying get method.

APPENDIX B ■ BDB XML API REFERENCE272

6668appb.qxd 7/18/06 2:37 PM Page 272

C++

void XmlIndexLookup::setIndex(const std::string &index)
const std::string &XmlIndexLookup::getIndex() const

Java

public void setIndex(String index)

Python

XmlIndexLookup.setIndex(index)

Perl

$lookup->setIndex($index);

PHP

$lookup->setIndex($index);

XmlIndexLookup::setLowBound
Sets the operation and value to be used for the index lookup operation. If the operation is a simple
inequality lookup, the lower bound is used as the single value and operation for the lookup. If the
operation is a range lookup, in which an upper bound is specified, the lower bound is used as the
lower boundary value and operation for the lookup. Each API provides accompanying get methods
for the value and the op.

Parameters

value

A value to be used for the lower bound of an index lookup. Use an uninitialized XmlValue object to
specify an empty value.

op

The operation for the upper bound. The possible values are XmlIndexLookup::NONE, XmlIndexLookup::
EQ (equality), XmlIndexLookup::LT (less than), XmlIndexLookup::LTE (less than or equal to), XmlIndex::
Lookup::GT (greater than), and XmlIndexLookup::GTE (greater than or equal to).

C++
void XmlIndexLookup::setLowBound(const XmlValue &value, XmlIndexLookup::Operation op)
XmlIndexLookup::Operation XmlIndexLookup::getLowBoundOperation() const
const XmlValue &XmlIndexLookup::getLowBoundValue() const

APPENDIX B ■ BDB XML API REFERENCE 273

6668appb.qxd 7/18/06 2:37 PM Page 273

Java

public void setLowBound(XmlValue value, int op)

Python

XmlIndexLookup.setLowBound(value, op)

Perl

$lookup->setLowBound($value, $op);

PHP

$lookup->setLowBound($value, $op);

XmlIndexLookup::setNode
Sets the name of the node to be used along with the indexing strategy for the index lookup opera-
tion. Each API provides get methods to retrieve the node URI and name.

C++

void XmlIndexLookup::setNode(const std::string &uri, const std::string &name)
const std::string &XmlIndexLookup::getNodeURI() const
const std::string &XmlIndexLookup::getNodeName() const

Java

public void setNode(String uri, String name)

Python

XmlIndexLookup.setNode(uri, name)

Perl

$lookup->setNode($uri, $name);

PHP

$lookup->setNode($uri, $name);

APPENDIX B ■ BDB XML API REFERENCE274

6668appb.qxd 7/18/06 2:37 PM Page 274

XmlIndexLookup::setParent
Sets the name of the parent node to be used for an edge index lookup operation. If the index is not
an edge index, this configuration is ignored. Each API provides accompanying get methods to
retrieve the parent node URI and name.

C++

void XmlIndexLookup::setParent(const std::string &uri, const std::string &name)
const std::string &XmlIndexLookup::getParentURI() const
const std::string &XmlIndexLookup::getParentName() const

Java

public void setParent(String uri, String name)

Python

XmlIndexLookup.setParent(uri, name)

Perl

$lookup->setParent($uri, $name);

PHP

$lookup->setParent($uri, $name);

XmlIndexSpecification
The XmlIndexSpecification class encapsulates the indexing specification of a container. An index-
ing specification can be retrieved with the XmlContainer::getIndexSpecification method and
modified with the XmlContainer::setIndexSpecification method.

The XmlIndexSpecification class provides an interface for manipulating the indexing speci-
fication through the XmlIndexSpecification::addIndex, XmlIndexSpecification::deleteIndex,
and XmlIndexSpecification::replaceIndex methods. The class interface also provides the
XmlIndexSpecification::next and XmlIndexSpecification::reset methods for iterating through
the specified indexes. The XmlIndexSpecification::find method can be used to search for the
indexing strategy for a known node. Finally, XmlIndexSpecification::addDefaultIndex enables you
to set a default indexing strategy for a container. You can replace and delete the default index using
XmlIndexSpecification::replaceDefaultIndex and XmlIndexSpecification::deleteDefaultIndex.
Note that adding an index to a container results in reindexing all the documents in that container,
which can take a very long time. It is good practice to design an application to add useful indexes
before populating a container.

An empty index specification object is constructed by using the class constructor.

APPENDIX B ■ BDB XML API REFERENCE 275

6668appb.qxd 7/18/06 2:37 PM Page 275

XmlIndexSpecification::addIndex
Adds an index to the index specification. You then set the index specification using XmlContainer::
setIndexSpecification.

Parameters

uri

The namespace of the node to be indexed. The default namespace is selected by passing an empty
string for the namespace.

name

The name of the element or attribute node to be indexed.

index

A comma-separated list of strings that represent the indexing strategy. The strings must contain the
following information:

unique-{path type}-{node type}-{key type}-{syntax}

These values are detailed in the following table; order is not important.

Value Description

unique Indicates that the indexed value is unique in the container. If this
keyword does not appear on the index string, the indexed value is not
required to be unique in the container.

{path type} Either node or edge.

{node type} One of element, attribute, or metadata. If metadata is specified, {path
type} must be node.

{key type} One of presence, equality, or substring.

{syntax} Identifies the type of information being indexed. It must be one of the
following values: none, anyURI, base64Binary, boolean, date, dateTime,
dayTimeDuration, decimal, double, duration, float, gDay, gMonth,
gMonthDay, gYear, gYearMonth, hexBinary, NOTATION, QName, string, time,
yearMonthDuration, untypedAtomic. See the BDB XML documentation
for full descriptions of the types.

Note that if {key type} is present, {syntax} must be none or simply not specified.

C++

void XmlIndexSpecification::addIndex(
const std::string &uri, const std::string &name, const std::string &index)

Java

public void addIndex(String uri, String name, String index)

APPENDIX B ■ BDB XML API REFERENCE276

6668appb.qxd 7/18/06 2:37 PM Page 276

Python

XmlIndexSpecification.addIndex(uri, name, index)

Perl

$indexSpec->addIndex($uri, $name, $index);

PHP

$indexSpec->addIndex($uri, $name, $index);

XmlIndexSpecification::addDefaultIndex
Adds one or more indexing strategies to the default index specification. That is, the index
provided on this method is applied to all nodes in a container, except for those for which an
explicit index is already declared. For more information on specifying indexing strategies, see
XmlIndexSpecification::addIndex.

C++

void XmlIndexSpecification::addDefaultIndex(const std::string &index)

Java

public void addDefaultIndex(String index)

Python

XmlIndexSpecification.addDefaultIndex(index)

Perl

$indexSpec->addDefaultIndex($index);

PHP

$indexSpec->addDefaultIndex($index);

XmlIndexSpecification::deleteIndex
Deletes one or more indexing strategies for a named document or metadata node. To delete
an index set for metadata, specify the URI and name used when the metadata was added to the
document.

APPENDIX B ■ BDB XML API REFERENCE 277

6668appb.qxd 7/18/06 2:37 PM Page 277

C++

void XmlIndexSpecification::deleteIndex(const std::string &uri,
const std::string &name, const std::string &index)

Java

public void deleteIndex(String uri, String name, String index)

Python

XmlIndexSpecification.deleteIndex(uri, name, index)

Perl

$indexSpec->deleteIndex($uri, $name, $index);

PHP

$indexSpec->deleteIndex($uri, $name, $index);

XmlIndexSpecification::deleteDefaultIndex
Deletes one or more indexing strategies from the default index specification. For more information
on specifying indexes, see XmlIndexSpecification::addIndex.

C++

void XmlContainer::deleteDefaultIndex(const std::string &index)
void XmlContainer::deleteDefaultIndex(Type type, XmlValue::Type syntax)

Java

public void deleteDefaultIndex(String index)

Python

XmlContainer.deleteDefaultIndex(index)

Perl

$indexSpec->deleteDefaultIndex($index);

APPENDIX B ■ BDB XML API REFERENCE278

6668appb.qxd 7/18/06 2:37 PM Page 278

PHP

$indexSpec->deleteDefaultIndex($index);

XmlIndexSpecification::find
Returns the indexing strategies for a named document or metadata node. This method returns true
if an index for the node is found; otherwise, it returns false. See XmlIndexSpecification::addIndex
for more information on index strategies.

C++

bool XmlIndexSpecification::find(const std::string &uri, const std::string &name,
std::string &index)

Java

public XmlIndexDeclaration find(String uri, String name)

Python

bool XmlIndexSpecification.find(uri, name, index)

Perl

my $bool = $indexSpec->find($uri, $name, $index);

PHP

$bool = $indexSpec->find($uri, $name);

XmlIndexSpecification::getDefaultIndex
Retrieves the default index. The default index is the index used by all nodes in the document in the
absence of any other index.

C++

std::string XmlIndexSpecification::getDefaultIndex() const

Java

public String getDefaultIndex()

APPENDIX B ■ BDB XML API REFERENCE 279

6668appb.qxd 7/18/06 2:37 PM Page 279

Python

XmlIndexSpecification.getDefaultIndex()

Perl

my $index = $indexSpec->getDefaultIndex();

PHP

$index = $indexSpec->getDefaultIndex();

XmlIndexSpecification::next
Obtains the next index in the XmlIndexSpecification. Use XmlIndexSpecification::reset to reset
this iterator. Returns true if additional indexes exist in the index list; otherwise, it returns false.

C++

bool XmlIndexSpecification::next(std::string &uri, std::string &name,
std::string &index)

Java

public XmlIndexDeclaration next()

Python

XmlIndexSpecification.next([uri, name, index])

Perl

my $index = $indexSpec->next();

PHP

$index = $indexSpec->next();

XmlIndexSpecification::replaceIndex
Identifies one or more indexing strategies to set for the identified document node or metadata node.
All existing indexing strategies for that node are deleted, and the indexing strategy identified by this
method is set for the node.

APPENDIX B ■ BDB XML API REFERENCE280

6668appb.qxd 7/18/06 2:37 PM Page 280

C++

void XmlIndexSpecification::replaceIndex(const std::string &uri,
const std::string &name, const std::string &index)

Java

public void replaceIndex(String uri, String name, String index)

Python

XmlIndexSpecification.replaceIndex(uri, name, index)

Perl

$indexSpec->replaceIndex($uri, $name, $index);

PHP

$indexSpec->replaceIndex($uri, $name, $index);

XmlIndexSpecification::replaceDefaultIndex
Replaces the default indexing strategy for the container with one or more specified indexing strate-
gies. The default index specification is used for all nodes in a document. You can add additional
indexes for specific document nodes using XmlIndexSpecification::addIndex.

C++

void XmlIndexSpecification::replaceDefaultIndex(const std::string &index)

Java

public void replaceDefaultIndex(String index)

Python

XmlIndexSpecification.replaceDefaultIndex(index)

Perl

$indexSpec->replaceDefaultIndex($index);

APPENDIX B ■ BDB XML API REFERENCE 281

6668appb.qxd 7/18/06 2:37 PM Page 281

PHP

$indexSpec->replaceDefaultIndex($index);

XmlIndexSpecification::reset
Resets the index specification iterator to the beginning of the index list. Use XmlIndexSpecification::
next to iterate through the indexes contained in the index specification.

C++

void XmlIndexSpecification::reset()

Java

public void reset()

Python

XmlIndexSpecification.reset()

Perl

$indexSpec->reset();

PHP

$indexSpec->reset();

XmlInputStream
XmlInputStreams are used to read and write XML data; they are created by using one of the
following: XmlManager::createLocalFileInputStream, XmlManager::createMemBufInputStream,
XmlManager::createStdInInputStream, XmlManager::createURLInputStream, or XmlDocument::
getContentAsXmlInputStream. Objects of this class are passed to XmlContainer::putDocument and
XmlDocument::setContentAsXmlInputStream to set document content. You can manually retrieve the
contents of the input stream by using XmlInputStream::readBytes and XmlInputStream::curPos.

For most APIs, XmlInputStream is a pure virtual interface and can be subclassed. This is useful
for streaming XML from an application directly into Berkeley DB XML without first converting it to
a string.

XmlInputStream::curPos
Returns the number of bytes currently read from the beginning of the input stream.

APPENDIX B ■ BDB XML API REFERENCE282

6668appb.qxd 7/18/06 2:37 PM Page 282

C++

virtual unsigned int XmlInputStream::curPos() const = 0

Java

public long curPos()

Python

XmlInputStream.curPos()

Perl

my $pos = $stream->curPos();

PHP

$pos = $stream->curPos();

XmlInputStream::readBytes
Reads maxToRead number of bytes from the input stream and places those bytes in toFill. Returns
the number of bytes read or returns 0 if the end of the stream has been reached.

C++

virtual unsigned int XmlInputStream::readBytes(char *toFill,
const unsigned int maxToRead)

Java

public long readBytes(byte[] toFill, long maxToRead)

Python

XmlInputStream.readBytes(toFill, maxToRead)

Perl

my $count = $stream->readBytes();

APPENDIX B ■ BDB XML API REFERENCE 283

6668appb.qxd 7/18/06 2:37 PM Page 283

PHP

$count = $stream->readBytes();

XmlManager
XmlManager is a high-level object used to manage containers, prepare and execute queries, create
transactions, create update contexts, create query contexts, and create input streams. The method
list follows.

XmlManager (Constructor)
The XmlManager constructor. Some variants of this constructor take a provided DbEnv for the under-
lying environment. Subsystems (logging, transactions, and so on) enabled for that environment are
then active for the constructed XmlManager and its operations. A convenience constructor takes no
parameters and behaves as if a 0 were passed as flags.

Parameters

dbenv

The DbEnv to use for the underlying database environment. The environment provided here must be
opened.

flags

This parameter must be set to 0 or by bitwise inclusively OR’ing together one or more of the follow-
ing values:

Flag Description

DBXML_ALLOW_EXTERNAL_ACCESS Permits XQuery queries to access external data sources,
including files on disk or network URIs. Disallowed by
default.

DBXML_ALLOW_AUTO_OPEN Automatically opens containers that query references and
closes them when query references are released. Disallowed
by default, causing queries that refer to unopened containers
to fail.

DBXML_ADOPT_DBENV Causes XmlManager to close and delete the underlying DbEnv
object automatically. Applicable only when a DbEnv object is
provided to the XmlManager constructor. This requires that the
passed DbEnv be dynamically allocated and not be deleted by
the caller.

APPENDIX B ■ BDB XML API REFERENCE284

6668appb.qxd 7/18/06 2:37 PM Page 284

C++

XmlManager::XmlManager(DbEnv *dbenv, u_int32_t flags = 0)
XmlManager::XmlManager(u_int32_t flags)
XmlManager::XmlManager()
XmlManager::XmlManager(const XmlManager &o)
XmlManager &operator = (const XmlManager &o)
XmlManager::~XmlManager()

Java
The Java API uses the XmlManagerConfig class in place of bitwise OR’d flags.

public XmlManager([Environment dbenv,] [XmlManagerConfig config])

Python

XmlManager([dbenv,] [flags=0])
XmlManager([mgr,] [flags])

Perl

my $manager = new XmlManager([$dbenv,] [, $flags]);

PHP

$manager = new XmlManager([$dbenv,] [, $flags]);

XmlManager::createContainer
Creates and opens a container and then returns a handle to an XmlContainer object. If the container
already exists at the time this method is called, an exception is thrown.

Use XmlManager::openContainer to open a container that has already been created. Containers
always remain open until the last handle referencing the container is destroyed.

Variants of this method accept an XmlTransaction object, a string name for the container, and
flags for container creation.

Parameters

txn

The XmlTransaction object to use for this container creation.

name

The container’s name relative to the underlying environment’s home unless an absolute path is
provided. Container names must be unique to their environment.

APPENDIX B ■ BDB XML API REFERENCE 285

6668appb.qxd 7/18/06 2:37 PM Page 285

flags

The flags to use for this container creation. The parameter must be set to 0 or by bitwise inclusively
OR’ing together one or more of the following values:

Flag Description

DB_CREATE Creates the container if it doesn’t exist; always used.

DB_EXCL Returns an error if the container exists; always used.

DB_RDONLY Opens the container for reading only.

DB_DIRTY_READ Enables read operations on the container to support “degree 1 isolation”,
meaning that read data might have been modified by transactions but
not committed. This flag is renamed to DB_READ_UNCOMMITTED in Berkeley
DB 4.4 and later.

DB_NOMMAP Causes Berkeley DB to not map the container into process memory.

DB_THREAD Causes the container to be free-threaded; usable by multiple threads
at once.

DB_XA_CREATE Creates a database to be accessed under an X/Open-conformant
Transaction Manager.

DB_TXN_NOT_DURABLE Causes Berkeley DB to not write log records for the container, so that
container integrity is maintained, but not after a system failure.

DBXML_CHKSUM Causes BDB XML to perform checksum verification of pages read into
the cache.

DBXML_ENCRYPT Encrypts the database container using the password specified to
DbEnv::set_encrypt().

DBXML_INDEX_NODES When a container uses node storage, causes the indexer to reference
nodes instead of documents so that XmlContainer::lookupIndex() can
return individual nodes rather than whole documents.

DBXML_TRANSACTIONAL Causes the container to support transactions, enabling XmlTransaction
objects to be used. When this flag is specified, a transaction object is
not required for createContainer.

DBXML_ALLOW_VALIDATION Causes BDB XML to validate XML on database writes if an XML
document refers to a DTD or XML schema.

Regardless of which flags you provide to this parameter, DB_CREATE | DB_EXCL are always used.

type

The type of container to create. The container type must be one of the following values:

Container Type Description

XmlContainer::NodeContainer Documents are stored in the container by individual
nodes. Preferred storage type.

XmlContainer::WholedocContainer Documents are stored in the container as whole
documents, preserving white space and formatting.

APPENDIX B ■ BDB XML API REFERENCE286

6668appb.qxd 7/18/06 2:37 PM Page 286

mode

A Unix file mode. On Windows systems, the mode parameter is ignored.

C++

XmlContainer XmlManager::createContainer(const std::string &name)

XmlContainer XmlManager::createContainer(
XmlTransaction &txn, const std::string &name)

XmlContainer XmlManager::createContainer(const std::string &name,
u_int32_t flags, XmlContainer::ContainerType type, int mode = 0)

XmlContainer XmlManager::createContainer(XmlTransaction &txn,
const std::string &name, u_int32_t flags,
XmlContainer::ContainerType type, int mode = 0)

Java

public XmlContainer createContainer([XmlTransaction txn,] String name,
[XmlContainerConfig config])

Python

XmlManager.createContainer([txn,] name, [flags,] [type,] [mode=0])

Perl

my $container = $manager->createContainer([$txn,] $name [, $flags, $type, $mode]);

PHP

$container = $manager->createContainer([$txn,] $name [, $flags, $type, $mode]);

XmlManager::createDocument
Instantiates a new XmlDocument object.

C++

XmlDocument XmlManager::createDocument()

Java

public XmlDocument createDocument()

APPENDIX B ■ BDB XML API REFERENCE 287

6668appb.qxd 7/18/06 2:37 PM Page 287

Python

XmlManager.createDocument()

Perl

my $document = $manager->createDocument();

PHP

$document = $manager->createDocument();

XmlManager::createIndexLookup
Instantiates a new XmlIndexLookup object for performing index lookup operations. Only a single
index can be specified, and substring indexes are not supported. As elsewhere, the uri, name, and
index parameters identify the index, whereas op is one of the following possible operations:

Operation Description

XmlIndexLookup::NONE Test for existence

XmlIndexLookup::EQ Test for equality

XmlIndexLookup::LT Less-than range test

XmlIndexLookup::LTE Less-than-or-equal-to range test

XmlIndexLookup::GT Greater-than range test

XmlIndexLookup::GTE Greater-then-or-equal-to range test

C++

XmlIndexLookup XmlManager::createIndexLookup(
XmlContainer &container, const std::string &uri, const std::string &name,
const std::string &index, const XmlValue &value = XmlValue(),
XmlIndexLookup::Operation op = XmlIndexLookup::EQ)

Java

public XmlIndexLookup createIndexLookup(XmlContainer container, String uri,
String name, String index, XmlValue value, int op)

Python

XmlManager.createIndexLookup(container, uri, name, index, value, op)

APPENDIX B ■ BDB XML API REFERENCE288

6668appb.qxd 7/18/06 2:37 PM Page 288

Perl

my $lookup = $manager->createIndexLookup($container, $uri, $name, $index, $value,
$op);

PHP

$lookup = $manager->createIndexLookup($container, $uri, $name, $index, $value, $op);

XmlManager::createLocalFileInputStream
Returns an XmlInputStream to the file filename for use with XmlContainer::putDocument or
XmlDocument::setContentAsXmlInputStream.

If the input stream is passed to either of these methods, it will be adopted and deleted. If it
is not passed, it is the responsibility of the user to delete the object. No attempt is made to ensure
that the file referenced contains well-formed or valid XML. Exceptions are thrown when the input
stream is actually read if the stream does not contain well-formed or valid XML.

C++

XmlInputStream *XmlManager::createLocalFileInputStream(
const std::string &filename) const

Java

public XmlInputStream createLocalFileInputStream(String filename)

Python

XmlManager.createLocalFileInputStream(filename)

Perl

my $stream = $manager->createLocalFileInputStream($filename);

PHP
This input stream is not supported by the PHP API.

XmlManager::createMemBufInputStream
Returns an XmlInputStream for the in-memory buffer srcDocBytes for use with XmlContainer::
putDocument or XmlDocument::setContentAsXmlInputStream.

If the input stream is passed to either of these methods, it is adopted and deleted. If it is not
passed, it is the responsibility of the user to delete the object. No attempt is made by this method to

APPENDIX B ■ BDB XML API REFERENCE 289

6668appb.qxd 7/18/06 2:37 PM Page 289

ensure that the memory referenced contains well-formed or valid XML. Exceptions are thrown at the
time that this input stream is actually read if the stream does not contain well-formed or valid XML.

C++

XmlInputStream *XmlManager::createMemBufInputStream(const char *srcDocBytes,
const unsigned int byteCount, const char *const bufId,
const bool adoptBuffer = false) const

XmlInputStream *XmlManager::createMemBufInputStream(const char *srcDocBytes,
const unsigned int byteCount, const bool copyBuffer) const

Java

public XmlInputStream createMemBufInputStream(String buffer, int bufLen,
boolean copyBuf)

public XmlInputStream createMemBufInputStream(InputStream is)

Python

XmlManager.createMemBufInputStream(srcDocBytes, byteCount, bufId, adoptBuffer)
XmlManager.createMemBufInputStream(srcDocBytes, byteCount, copyBuffer)

Perl

my $stream = $manager->createMemBufInputStream($bytes, $count, $buffer);

PHP

$stream = $manager->createMemBufInputStream($bytes, $count, $buffer);

XmlManager::createModify
Instantiates an XmlModify object.

C++

XmlModify XmlManager::createModify()

Java

public XmlModify createModify()

APPENDIX B ■ BDB XML API REFERENCE290

6668appb.qxd 7/18/06 2:37 PM Page 290

Python

XmlManager.createModify()

Perl

my $modify = $manager->createModify();

PHP

$modify = $manager->createModify();

XmlManager::createQueryContext
Creates a new XmlQueryContext object.

Parameters

rt

The available return types are as follows:

Return Type Description

XmlQueryContext::LiveValues Query results are a reference to the data within the database.
This is the default setting.

XmlQueryContext::DeadValues Query results are a copy of the data from the database.

et

The two evaluation types are the following:

Evaluation Type Description

XmlQueryContext::Eager The query is executed, with resulting values determined and stored in
memory before the query returns. This is the default.

XmlQueryContext::Lazy The query is executed, but the resulting values are not determined or
stored in memory until the API refers to them by iterating the result set.
This means that a query uses less time and processing.

C++

XmlQueryContext XmlManager::createQueryContext(
XmlQueryContext::ReturnType rt = XmlQueryContext::LiveValues,
XmlQueryContext::EvaluationType et = XmlQueryContext::Eager)

APPENDIX B ■ BDB XML API REFERENCE 291

6668appb.qxd 7/18/06 2:37 PM Page 291

Java

public XmlQueryContext createQueryContext(int rt, int et)

Python

XmlManager.createQueryContext(rt, et)

Perl

my $queryContext = $manager->createQueryContext($rt, $et);

PHP

$queryContext = $manager->createQueryContext($rt, $et);

XmlManager::createResults
Instantiates a new empty XmlResults object. XmlResults::add can be used to add XmlValue objects
to this result set.

C++

XmlResults XmlManager::createResults()

Java

public XmlResults createResults()

Python

XmlManager.createResults()

Perl

my $results = $manager->createResults();

PHP

$results = $manager->createResults();

APPENDIX B ■ BDB XML API REFERENCE292

6668appb.qxd 7/18/06 2:37 PM Page 292

XmlManager::createStdInInputStream
Returns an XmlInputStream to the console. Use this input stream with XmlContainer::putDocument
or XmlDocument::setContentAsXmlInputStream. If the input stream is passed to either of these
methods, it will be adopted and deleted. If it is not passed, it is the responsibility of the user to
delete the object.

C++

XmlInputStream *XmlManager::createStdInInputStream() const

Java

public XmlInputStream createStdInInputStream()

Python

XmlManager.createStdInInputStream()

Perl

my $stream = $manager->createStdInInputStream();

PHP
This stream type is not supported by the PHP API.

XmlManager::createTransaction
The XmlManager::createTransaction method creates a new XmlTransaction object. If a DbTxn
object is not provided to this method, a new transaction begins (a DbTxn object is instantiated,
and DbEnv::txn_begin is called).

Transactions must have been enabled when this XmlManager object was opened (DB_INIT_TXN
specified), or else this method throws an exception.

Parameters

DbTxn

If a DbTxn parameter is passed to the XmlManager::createTransaction method, the new
XmlTransaction is simply another handle for the DbTxn object. In this case, if the XmlTransaction
object is destroyed or goes out of scope before XmlTransaction::commit or XmlTransaction::abort
is called, the state of the underlying transaction is left unchanged. This enables a transaction to
be controlled external to its XmlTransaction object. If no DbTxn is passed, and the XmlTransaction
object is destroyed or goes out of scope, the transaction is implicitly aborted.

APPENDIX B ■ BDB XML API REFERENCE 293

6668appb.qxd 7/18/06 2:37 PM Page 293

flags

This parameter must be set to 0 or by bitwise inclusively OR’ing together one or more of the follow-
ing values:

Flag Description

DB_DEGREE_2 The transaction will have “degree 2 isolation”, meaning that previously
read data items can be deleted or modified by other transactions
during the transaction’s life span. In Berkeley DB 4.4, this flag was
renamed to DB_READ_COMMITTED.

DB_DIRTY_READ The transaction will have “degree 1 isolation”, meaning that read data
items can include data modified by other transactions, although not
yet committed. Must be specified when the underlying container
was opened to work. In Berkeley DB 4.4, this flag was renamed to
DB_READ_UNCOMMITTED.

DB_TXN_NOSYNC The transaction does not synchronously flush the log on commit or
prepare. Database integrity will be maintained, but the transaction
might be excluded if recovery is necessary.

DB_TXN_NOWAIT Causes the transaction to not wait for a lock if one is unavailable.
Instead of blocking, it will return DB_LOCK_DEADLOCK or throw an
exception immediately.

DB_TXN_SYNC The transaction will synchronously flush the log on commit or prepare.
All atomic, consistent, isolated, durable (ACID) properties are exhibited.
This is the default behavior.

C++

XmlTransaction XmlManager::createTransaction(DbTxn *toAdopt)
XmlTransaction XmlManager::createTransaction(u_int32_t flags = 0)

Java

public XmlTransaction createTransaction([XmlTransaction txn,] [Transaction Config config])

Python

XmlManager.createTransaction([txn,] [flags=0])

Perl

my $txn = $manager->createTransaction([$flags]);

PHP

$txn = $manager->createTransaction([$flags]);

APPENDIX B ■ BDB XML API REFERENCE294

6668appb.qxd 7/18/06 2:37 PM Page 294

XmlManager::createURLInputStream
Creates an input stream for the identified URL. URLs that require network access (for example,
http://...) are supported only if Xerces was compiled with socket support. Use this input stream
with XmlContainer::putDocument or XmlDocument::setContentAsXmlInputStream.

Parameters

baseId

The base ID to use for this URL.

systemId

The system ID to use for this URL.

publicId

The public ID to use for this URL.

C++

XmlInputStream *XmlManager::createURLInputStream(const std::string &base Id,
const std::string &systemId, const std::string &publicId) const

XmlInputStream *XmlManager::createURLInputStream(
const std::string &base Id, const std::string &systemId) const

Java

public XmlInputStream createURLInputStream(String baseId, String systemId
[, String publicId])

Python

XmlManager.createURLInputStream(base Id, systemId [,publicId])

Perl

my $stream = $manager->createURLInputStream($baseID, $systemID [, $publicID]);

PHP
This method is not supported by the PHP API.

XmlManager::createUpdateContext
Instantiates a new XmlUpdateContext object with default settings. This object is used for XmlContainer
and XmlModify operations that add, delete, and modify documents and also documents in containers.

APPENDIX B ■ BDB XML API REFERENCE 295

6668appb.qxd 7/18/06 2:37 PM Page 295

C++

XmlUpdateContext XmlManager::createUpdateContext()

Java

public XmlUpdateContext createUpdateContext()

Python

XmlManager.createUpdateContext()

Perl

my $updateContext = $manager->createUpdateContext();

PHP

$updateContext = $manager->createUpdateContext();

XmlManager::dumpContainer
Dumps the contents of the container to the specified output stream. The result can be used to
reconstruct a container with a call to XmlManager::loadContainer. The container must be closed
and must have been opened at least once.

Parameters

name

The name of the container to be dumped.

out

The output stream to which the container is to be dumped.

C++

void XmlManager::dumpContainer(const std::string name, std::ostream *out)

Java

public void dumpContainer(String name, String out)

APPENDIX B ■ BDB XML API REFERENCE296

6668appb.qxd 7/18/06 2:37 PM Page 296

Python

XmlManager.dumpContainer(name, out)

Perl

$manager->dumpContainer($name, $out);

PHP
This method is not yet supported by the PHP API.

XmlManager::existsContainer
The XmlManager::existsContainer method examines the named file; if it is a container, it returns a
nonzero database format version. If the file does not exist or is not a container, zero is returned. The
container can be open or closed; no exceptions are thrown from this method.

C++

int XmlManager::existsContainer(const std::string &name)

Java

public int existsContainer(String name)

Python

XmlManager.existsContainer(name)

Perl

my $version = $manager->existsContainer($name);

PHP

$version = $manager->existsContainer($name);

XmlManager::getDbEnv
Returns a handle to the underlying database environment.

APPENDIX B ■ BDB XML API REFERENCE 297

6668appb.qxd 7/18/06 2:37 PM Page 297

C++

DbEnv *XmlManager::getDbEnv()

Java

public Environment getEnvironment()

Python

XmlManager.getDBEnv()

Perl

my $env = $manager->getDbEnv();

PHP
This method is not supported in the PHP API.

XmlManager::getHome
Returns the home directory for the underlying database environment. XmlContainer files are placed
relative to this directory unless an absolute path is used for the container name.

C++

const std::string &XmlManager::getHome() const

Java

public String getHome()

Python

XmlManager.getHome()

Perl

my $home = $manager->getHome();

PHP
This method is not supported in the PHP API.

APPENDIX B ■ BDB XML API REFERENCE298

6668appb.qxd 7/18/06 2:37 PM Page 298

XmlManager::loadContainer
Loads data from the specified stream into the container. The container’s existing contents are
discarded and replaced with the documents from the stream.

The specified input stream should contain data as created by XmlManager::dumpContainer.
The container must be closed and must have been opened at least once.

Parameters

name

The name of the container to load.

in

The input stream from which the container is to be loaded.

lineno

Used by the application to specify the starting line number in the stream that is to be read. The sys-
tem uses the same parameter to return the line number of the last line read from the stream.

context

The XmlUpdateContext object to use for the load.

C++

void XmlManager::loadContainer(const std::string name, std::istream *in,
unsigned long *lineno, XmlUpdateContext &context)

Java

public void loadContainer(String name, String infile, XmlUpdateContext context)

Python

XmlManager.loadContainer(name, in, lineno, context)

Perl

$manager->loadContainer($name, $in_filename, [$lineno, [$context]]);

PHP
This method is not supported by the PHP API.

APPENDIX B ■ BDB XML API REFERENCE 299

6668appb.qxd 7/18/06 2:37 PM Page 299

XmlManager::openContainer
Opens a container, returning a handle to an XmlContainer object. Unless DB_CREATE is specified, the
container must already exist at the time that this method is called.

Use XmlManager::createContainer or provide DB_CREATE to the parameter on this method to
create and open a new container—the effect is identical. Containers always remain open until the
last handle referencing the container is destroyed. The name provided here must be unique for the
environment.

Parameters

txn

The XmlTransaction object to use for this container open.

name

The container name. The container is created relative to the underlying environment’s home direc-
tory (see XmlManager for more information) unless an absolute path is used for the name; in that
case, the container is created in the location identified by the path.

type

If the container is to be created, the type of the container. The container type must be one of the
following values:

Type Description

XmlContainer::NodeContainer Documents are broken down into their component
nodes; these nodes are stored individually in the
container. This is the preferred container storage type.

XmlContainer::WholedocContainer Documents are stored intact; all white space and
formatting are preserved.

flags

The flags to use for this container open. The flags parameter must be set to 0 or by bitwise inclu-
sively OR’ing together one or more of the following values:

Flag Description

DB_CREATE Creates the container if it does not currently exist.

DB_EXCL Returns an error if the container already exists. The DB_EXCL flag is
meaningful only when specified with the DB_CREATE flag.

DB_RDONLY Opens the container for reading only. Any attempt to modify items
in the container will fail, regardless of the actual permissions of any
underlying files.

DB_THREAD Causes the container handle to be free-threaded (concurrently
usable by multiple threads in the address space).

APPENDIX B ■ BDB XML API REFERENCE300

6668appb.qxd 7/18/06 2:37 PM Page 300

Flag Description

DBXML_CHKSUM Performs checksum verification of pages read into the cache from
the backing file store. Berkeley DB XML uses the Secure Hash
Algorithm 1 (SHA1) if encryption is configured and uses a general
hash algorithm if it is not.

DBXML_INDEX_NODES Relevant for node storage containers only. Causes the indexer to
create index targets that reference nodes rather than documents.
Enables XmlContainer::lookupIndex to return individual nodes
instead of whole documents.

DBXML_TRANSACTIONAL Causes the container to support transactions. If this flag is set,
an XmlTransaction object can be used with any method that
supports transactional protection. Also, if this flag is used, and if an
XmlTransaction object is not provided to a method that modifies an
XmlContainer or XmlDocument object, autocommit is automatically
used for the operation.

DBXML_ALLOW_VALIDATION When loading documents into the container, validates the XML if it
refers to a DTD or XML schema.

C++

XmlContainer XmlManager::openContainer(const std::string &name)

XmlContainer XmlManager::openContainer(
XmlTransaction &txn, const std::string &name)

XmlContainer XmlManager::openContainer(
XmlTransaction &txn, const std::string &name,
u_int32_t flags, XmlContainer::ContainerType type, int mode)

...

Java

public XmlContainer openContainer([XmlTransaction txn,] String name,
[XmlContainerConfig config])

Python

XmlManager.openContainer([txn,] name, [flags,] [type,] [mode])

Perl

my $container = $manager->openContainer([$txn,] $name [, $flags]);

PHP

$container = $manager->openContainer([$txn,] $name [, $flags]);

APPENDIX B ■ BDB XML API REFERENCE 301

6668appb.qxd 7/18/06 2:37 PM Page 301

XmlManager::prepare
Compiles an XQuery expression into an XmlQueryExpression object. The XQuery expression can
then be executed repeatedly by using XmlQueryExpression::execute.

Use this method to compile and evaluate XQuery expressions against your XmlContainer and
XmlDocument objects any time you want to evaluate the expression more than once.

C++

XmlQueryExpression XmlManager::prepare(const std::string &xquery,
XmlQueryContext &context)

XmlQueryExpression XmlManager::prepare(XmlTransaction &txn,
const std::string &xquery, XmlQueryContext &context)

Java

public XmlQueryExpression prepare([XmlTransaction txn,] String query,
XmlQueryContext context)

Python

XmlManager.prepare([txn,] xquery, context)

Perl

my $queryExpression = $manager->prepare([$txn,] $xquery, $context);

PHP

$queryExpression = $manager->prepare([$txn,] $xquery [, $context]);

XmlManager::query
Executes a query in the context of the XmlManager object. This method is the equivalent of calling
XmlManager::prepare and then XmlQueryExpression::execute on the prepared query.

Parameters

txn

If the operation is to be transaction-protected, the txn parameter is an XmlTransaction handle
returned from XmlManager::createTransaction.

xquery

The XQuery query string.

APPENDIX B ■ BDB XML API REFERENCE302

6668appb.qxd 7/18/06 2:37 PM Page 302

context

The XmlQueryContext to use for this query.

flags

This parameter must be set to 0 or by bitwise inclusively OR’ing together one or more of the
following values:

Flag Description

DBXML_LAZY_DOCS Returns document content and/or metadata as needed; not retrieved (into
memory) automatically at query time.

DB_DEGREE_2 Ensures that the query will have “degree 2 isolation”, meaning that previously
read data items can be deleted or modified by other transactions during the
transaction’s lifespan. Renamed to DB_READ_UNCOMMITTED in Berkeley DB 4.4
and later.

DB_DIRTY_READ Ensures that the query will have “degree 1 isolation”, meaning that read data
items can include data modified by other transactions, although not yet
committed. Must be specified when the underlying container was opened.
Renamed to DB_READ_UNCOMMITTED in Berkeley DB 4.4 and later.

DB_RMW Forces the query to acquire a write lock instead of a read lock. This eliminates
deadlock during a read-modify-write cycle by acquiring the write lock early,
preventing a concurrent read-modify-write cycle from deadlocking.

C++

XmlResults XmlManager::query(const std::string &xquery,
XmlQueryContext &context, u_int32_t flags = 0)

XmlResults XmlManager::query(XmlTransaction &txn,
const std::string &xquery, XmlQueryContext &context, u_int32_t flags = 0)

Java

public XmlResults query([XmlTransaction txn,] String query, XmlQueryContext context,
[XmlDocumentConfig config])

Python

XmlManager.query([txn,] xquery, context, flags=0)

Perl

my $results = $manager->query([$txn,] $xquery, $context, $flags);

APPENDIX B ■ BDB XML API REFERENCE 303

6668appb.qxd 7/18/06 2:37 PM Page 303

PHP

$results = $manager->query([$txn,] $xquery [, $context] [, $flags]);

XmlManager::reindexContainer
Reindexes an entire container. The container should be backed up prior to using this method
because it destroys existing indexes before reindexing. If the operation fails, and your container is
not backed up, you might lose information.

Use this call to change the type of indexing used for a container between document-level
indexes and node-level indexes. Depending on the size of the container, this method can take a very
long time to execute and should not be used casually.

C++

void XmlManager::reindexContainer(
const std::string &name, XmlUpdateContext &context, u_int32_t flags = 0)

void XmlManager::reindexContainer(
XmlTransaction &txn, const std::string &name,
XmlUpdateContext &context, u_int32_t flags = 0)

Java

public void reindexContainer([XmlTransaction txn,] String name,
XmlUpdateContext context, [XmlContainerConfig config])

Python

XmlManager.reindexContainer([txn,] name, context, flags=0)

Perl

$manager->reindexContainer([$txn,] $name, $context, $flags);

PHP
This method is not supported by the PHP API.

XmlManager::removeContainer
The XmlManager::removeContainer method removes the underlying file for the container from the
file system. The container must be closed and must have been opened at least once.

APPENDIX B ■ BDB XML API REFERENCE304

6668appb.qxd 7/18/06 2:37 PM Page 304

Parameters

txn

If the operation is to be transaction-protected, the txn parameter is an XmlTransaction handle
returned from XmlManager::createTransaction.

name

The name of the container to be removed.

C++

void XmlManager::removeContainer(XmlTransaction &txn, const std::string &name)

Java

public void removeContainer([XmlTransaction txn,] String name)

Python

XmlManager.removeContainer([txn,] name)

Perl

$manager->removeContainer([$txn,] $name);

PHP

$manager->removeContainer([$txn,] $name);

XmlManager::renameContainer
The XmlManager::renameContainer method renames the container’s underlying file. The container
must be closed and must have been opened at least once.

Parameters

txn

If the operation is to be transaction-protected, the txn parameter is an XmlTransaction handle
returned from XmlManager::createTransaction.

oldName

The name of the container whose name you want to change.

APPENDIX B ■ BDB XML API REFERENCE 305

6668appb.qxd 7/18/06 2:37 PM Page 305

newName

The new container name.

C++

void XmlManager::renameContainer(XmlTransaction &txn, const std::string
&oldName, const std::string &newName)

Java

public void renameContainer([XmlTransaction txn,] String oldName, String newName)

Python

XmlManager.renameContainer([txn,] oldName, newName)

Perl

$manager->renameContainer([$txn,] $oldName, $newName);

PHP

$manager->renameContainer([$txn,] $oldName, $newName);

XmlManager::setDefaultContainerFlags
Sets the default flags used for containers opened and created by this XmlManager object. If a form
of XmlManager::createContainer or XmlManager::openContainer is used that takes a flags argu-
ment, the settings provided using this method are ignored. Each API provides a corresponding
getDefaultContainerFlags method.

C++

void XmlManager::setDefaultContainerFlags(u_int32_t flags)
u_int32_t XmlManager::getDefaultContainerFlags()

Java

public void setDefaultContainerConfig(XmlContainerConfig config)

Python

XmlManager.setDefaultContainerFlags(flags)

APPENDIX B ■ BDB XML API REFERENCE306

6668appb.qxd 7/18/06 2:37 PM Page 306

Perl

$manager->setDefaultContainerFlags($flags);

PHP

$manager->setDefaultContainerFlags($flags);

XmlManager::setDefaultContainerType
Sets the default type used for containers opened and created by this XmlManager object. If a form of
XmlManager::createContainer or XmlManager::openContainer is used that takes a type argument,
the settings provided using this method are ignored. Each API provides an accompanying method:
getDefaultContainerType.

C++

void XmlManager::setDefaultContainerType(XmlContainer::ContainerType type)
XmlContainer::ContainerType XmlManager::getDefaultContainerType()

Java

public void setDefaultContainerType(int type)

Python

XmlManager.setDefaultContainerType(type)

Perl

$manager->setDefaultContainerType($type);

PHP

$manager->setDefaultContainerType($type);

XmlManager::setDefaultPageSize
The XmlManager::setDefaultPageSize method sets the size of the pages used to store documents in
the database. The size is specified in bytes in the range 512 bytes to 64 KB. The system selects a page
size based on the underlying file system input/output (I/O) block size if one is not explicitly set by
the application. The default page size has a lower limit of 512 bytes and an upper limit of 16 KB.
Documents that are larger than a single page are stored on multiple pages. This method has no
effect on existing containers.

APPENDIX B ■ BDB XML API REFERENCE 307

6668appb.qxd 7/18/06 2:37 PM Page 307

Parameters

pagesize

The page size in bytes.

C++

void XmlManager::setDefaultPageSize(u_int32_t pageSize)
u_int32_t XmlManager::getDefaultPageSize()

Java

public void setDefaultPageSize(int pageSize)

Python

XmlManager.setDefaultPageSize(pageSize)

Perl

$manager->setDefaultPageSize($pagesize);

PHP

$manager->setDefaultPageSize($pagesize);

XmlManager::setLogCategory
Most APIs use this method as an alias for the C++ DbXml::setLogCategory. See its reference entry for
details.

XmlManager.setLogLevel
This is an alias for the DbXml::setLogLevel method of the C++ API. See its reference entry for details.

XmlManager::upgradeContainer
Upgrades the container from a previous version of Berkeley DB XML or Berkeley DB to the current
version. A Berkeley DB upgrade is first performed using the Db::upgrade method and then the
Berkeley DB XML container is upgraded. If no upgrade is needed, no changes are made. Container
upgrades are done in place and are destructive. For example, if pages need to be allocated, and no
disk space is available, the container might be left corrupted. Backups should be made before con-
tainers are upgraded. The container must be closed.

APPENDIX B ■ BDB XML API REFERENCE308

6668appb.qxd 7/18/06 2:37 PM Page 308

Parameters

name

The name of the container to be upgraded.

context

The XmlUpdateContext object to be used for this operation.

C++

void XmlManager::upgradeContainer(const std::string &name, XmlUpdateContext &context)

Java

public void upgradeContainer(String name, XmlUpdateContext context)

Python

XmlManager.upgradeContainer(name, context)

Perl

$manager->upgradeContainer($name, $context);

PHP

$manager->upgradeContainer($name [, $context]);

XmlManager::verifyContainer
Checks to see that the container data files are not corrupt, and optionally writes the salvaged
container data to the specified output stream. The container must be closed and must have been
opened at least once.

Parameters

name

The name of the container to be verified.

out

The stream to which the salvaged container data is to be dumped.

APPENDIX B ■ BDB XML API REFERENCE 309

6668appb.qxd 7/18/06 2:37 PM Page 309

flags

Must be set to 0, DB_SALVAGE, or DB_SALVAGE and DB_AGGRESSIVE. Please refer to the Berkeley DB refer-
ence manual for a full discussion of these values.

C++

void XmlManager::verifyContainer(const std::string &name, std::ostream *out,
u_int32_t flags)

Java

public void verifyContainer(String name, String out, [VerifyConfig config])

Python

XmlManager.verifyContainer(name, out, flags)

Perl

$manager->verifyContainer($name, $out, $flags);

PHP
The PHP API does not provide this method.

XmlManagerConfig
This Java-only class is used to configure XmlManager objects in place of most APIs’ bitwise OR’d flags.
It provides corresponding get methods for each set method.

XmlManagerConfig.setAdoptEnvironment
Sets whether the XmlManager object will automatically close the environment handle at the end of
the XmlManager life.

Java

public XmlManagerConfig setAdoptEnvironment(boolean value)

XmlManagerConfig.setAllowExternalAccess
Allows queries to access data sources external to a container, such as files on disk or network.

APPENDIX B ■ BDB XML API REFERENCE310

6668appb.qxd 7/18/06 2:37 PM Page 310

Java

public XmlManagerConfig setAllowExternalAccess(boolean value)

XmlManagerConfig.setAllowAutoOpen
Enables unopened containers to be automatically opened when queries reference them.

Java

public XmlManagerConfig setAllowAutoOpen(boolean value)

XmlMetaDataIterator
This class provides a simple iterator of the metadata for a document. Metadata is set on a document
with XmlDocument::setMetaData. You can also use XmlDocument::getMetaData to return a specific
metadata item. This object is instantiated using XmlDocument::getMetaDataIterator.

XmlMetaDataIterator::next
Returns the next item in the XmlDocument’s metadata list. If there is no next item, this method
returns false. Otherwise, it returns true.

C++

bool XmlMetaDataIterator::next(std::string &uri, std::string &name, XmlValue &value)

Java

public XmlMetaData next()

Python

XmlMetaDataIterator.next(uri, name, value)

Perl

$metadataIterator->next($uri, $name, $value);

PHP
This method is not supported by the PHP API.

APPENDIX B ■ BDB XML API REFERENCE 311

6668appb.qxd 7/18/06 2:37 PM Page 311

XmlMetaDataIterator::reset
Sets the iterator to the beginning of the XmlDocument’s metadata list.

C++

void XmlMetaDataIterator::reset()

Java

public void reset()

Python

XmlMetaDataIterator.reset()

Perl

$metadataIterator->reset();

PHP
This method is not supported by the PHP API.

XmlModify
The XmlModify class enables one or more documents to be modified in place. An object of this class
provides methods to specify a series of changes to a document. The object is then executed and the
steps performed in the order specified—on one or many documents. The document set can be the
result of an XQuery query. XmlModify objects are created using XmlManager::createModify.

XmlModify::addAppendStep
Appends the provided data to the selected node’s child nodes. If the operation’s target is an attribute
node or the document root node, an exception is thrown at modification execution time.

If the content to be added is an attribute, the content is added to the targeted node’s attribute
list. If the content to add is an element node, text, comment, or processing instruction, its content
is added immediately after the targeted node’s last child node—unless the location parameter is
specified.

C++

void XmlModify::addAppendStep(const XmlQueryExpression &selectionExpr,
XmlObject type, const std::string &name, const std::string &content,
int location = -1)

APPENDIX B ■ BDB XML API REFERENCE312

6668appb.qxd 7/18/06 2:37 PM Page 312

Java

public void addAppendStep(XmlQueryExpression selectionExpr, int type, String name,
String content)

Python

XmlModify.addAppendStep(selectionExpr, type, name, content)

Perl

$modify->addAppendStep($selectionExpr, $type, $name, $content [, $location]);

PHP

$modify->addAppendStep($selectionExpr, $type, $name, $content [, $location]);

XmlModify::addInsertAfterStep
Inserts the provided data into the document after the selected node. If the operation’s target is an
attribute node or the document root node, an exception is thrown at modification execution time.

If the content to be added is an attribute, the content is added to the targeted node’s parent
node. For any other type of content, the content is inserted into the document immediately after
the targeted node’s end tag as its next sibling.

C++

void XmlModify::addInsertAfterStep(const XmlQueryExpression &selectionExpr,
XmlObject type, const std::string &name, const std::string &content)

Java

public void addInsertAfterStep(XmlQueryExpression selectionExpr, int type,
String name, String content)

Python

XmlModify.addInsertAfterStep(selectionExpr, type, name, content)

Perl

$modify->addInsertAfterStep($selectionExpr, $type, $name, $content);

APPENDIX B ■ BDB XML API REFERENCE 313

6668appb.qxd 7/18/06 2:37 PM Page 313

PHP

$modify->addInsertAfterStep($selectionExpr, $type, $name, $content);

XmlModify::addInsertBeforeStep
Inserts the provided data into the document before the selected node as a previous sibling. If the
operation’s target is an attribute node or the document root node, an exception is thrown at modifi-
cation execution time.

If the content to be added is an attribute, the content is added to the targeted node’s parent
node. For any other type of content, the content is inserted into the document immediately before
the targeted node’s start tag.

C++

void XmlModify::addInsertBeforeStep(const XmlQueryExpression &selectionExpr,
XmlObject type, const std::string &name, const std::string &content)

Java

public void addInsertBeforeStep(XmlQueryExpression selectionExpr, int type,
String name, String content)

Python

XmlModify.addInsertBeforeStep(selectionExpr, type, name, content)

Perl

$modify->addInsertBeforeStep($selectionExpr, $type, $name, $content);

PHP

$modify->addInsertBeforeStep($selectionExpr, $type, $name, $content);

XmlModify::addRemoveStep
Removes the node targeted by the selection expression. If the operation’s target is the document
root node, an exception is thrown at modification execution time.

C++

void XmlModify::addRemoveStep(const XmlQueryExpression &selectionExpr)

APPENDIX B ■ BDB XML API REFERENCE314

6668appb.qxd 7/18/06 2:37 PM Page 314

Java

public void addRemoveStep(XmlQueryExpression selectionExpr)

Python

XmlModify.addRemoveStep(selectionExpr)

Perl

$modify->addRemoveStep($selectionExpr);

PHP

$modify->addRemoveStep($selectionExpr);

XmlModify::addRenameStep
Renames an element node, attribute node, or processing instruction. If the document content
targeted by selectionExpr is any other type of content, an exception is thrown at modification exe-
cution time.

C++

void XmlModify::addRenameStep(const XmlQueryExpression &selectionExpr,
const std::string &newName)

Java

public void addRenameStep(XmlQueryExpression selectionExpr, String newName)

Python

XmlModify.addRenameStep(selectionExpr, newName)

Perl

$modify->addRenameStep($selectionExpr, $newName);

PHP

$modify->addRenameStep($selectionExpr, $newName);

APPENDIX B ■ BDB XML API REFERENCE 315

6668appb.qxd 7/18/06 2:37 PM Page 315

XmlModify::addUpdateStep
Replaces the targeted node’s content with text. If the targeted node is an element node, all the ele-
ment node’s children and text nodes are replaced with text. If the targeted node is an attribute node,
the attribute’s value is replaced by text. The purpose of this interface is primarily to replace text con-
tent. Note that text is treated as a text node. If it contains markup, that markup is escaped to make it
legal text.

C++

void XmlModify::addUpdateStep(const XmlQueryExpression &selectionExpr,
const std::string &text)

Java

public void addUpdateStep(XmlQueryExpression selectionExpr, String text)

Python

XmlModify.addUpdateStep(selectionExpr, text)

Perl

$modify->addUpdateStep($selectionExpr, $content);

PHP

$modify->addUpdateStep($selectionExpr, $content);

XmlModify::execute
Executes one or more document modification operations (or steps) against an XmlResults or
XmlValue object. Upon completing the modification, the modified document is optionally updated
in the backing XmlContainer for you. Returns the number of nodes modified.

If the XmlUpdateContext object state is set to apply changes to the backing container (the
default), modifications are automatically written back to the container. This state is controlled by
using XmlUpdateContext::setApplyChangesToContainers.

Note that the modification steps are executed in the order in which they were specified to this
object. Modification steps are specified using XmlModify::add*Step methods.

See the BDB XML documentation for details on the variant uses of this method.

Parameters

txn

If the operation is to be transaction-protected, the txn parameter is an XmlTransaction handle
returned from XmlManager::createTransaction.

APPENDIX B ■ BDB XML API REFERENCE316

6668appb.qxd 7/18/06 2:37 PM Page 316

toModify

The XmlValue or XmlResults object to modify using this collection of modification steps from the
current position in the result set.

context

The XmlQueryContext to use for this modification.

uc

The XmlUpdateContext to use for this modification.

C++

unsigned int XmlModify::execute(XmlValue &toModify,
XmlQueryContext &context, XmlUpdateContext &uc) const

unsigned int XmlModify::execute(XmlResults &toModify,
XmlQueryContext &context, XmlUpdateContext &uc) const

unsigned int XmlModify::execute(XmlTransaction &txn,
XmlValue &toModify, XmlQueryContext &context, XmlUpdateContext &uc) const

unsigned int XmlModify::execute(XmlTransaction &txn,
XmlResults &toModify, XmlQueryContext &context, XmlUpdateContext &uc) const

Java

public void execute([XmlTransaction txn,] XmlResults toModify,
XmlQueryContext context, XmlUpdateContext uc)

Python

XmlModify.execute([txn,] toModify, context, uc)

Perl

$modify->execute([$txn,] $toModify, $context, $uc);

PHP

$modify->execute([$txn,] $toModify, $context [, $uc]);

XmlQueryContext
This class encapsulates the context within which a query is performed against a container, includ-
ing namespace mappings, variable bindings, and flags that indicate how the query result set should
be determined and returned.

APPENDIX B ■ BDB XML API REFERENCE 317

6668appb.qxd 7/18/06 2:37 PM Page 317

XmlQueryContext objects are instantiated using XmlManager::createQueryContext. XmlQueryContext
enables you to define whether queries executed within the context are to be evaluated lazily or eagerly,
and whether the query is to return live or dead values. For detailed descriptions of these parameters,
see XmlQueryContext::setReturnType and XmlQueryContext::setEvaluationType. Note that these val-
ues are also set when you create a query context using XmlManager::createQueryContext.

XmlQueryContext::clearNamespaces
The XmlQueryContext::clearNamespaces method removes all namespace mappings from the query
context.

C++

void XmlQueryContext::clearNamespaces()

Java

public void clearNamespaces()

Python

XmlQueryContext.clearNamespaces()

Perl

$queryContext->clearNamespaces();

PHP

$queryContext->clearNamespaces;

XmlQueryContext::removeNamespace
The XmlQueryContext::removeNamespace method removes the namespace prefix to URI mapping for
the specified prefix. A call to this method with a prefix that has no existing mapping is ignored.

C++

void XmlQueryContext::removeNamespace(const std::string &prefix)

Java

public void removeNamespaces(String prefix)

APPENDIX B ■ BDB XML API REFERENCE318

6668appb.qxd 7/18/06 2:37 PM Page 318

Python

XmlQueryContext.removeNamespace(prefix)

Perl

$queryContext->removeNamespace($prefix);

PHP

$queryContext->removeNamespace($prefix);

XmlQueryContext::setDefaultCollection
Sets the default collection to be used when fn:collection() is called without any arguments in an
XQuery expression. You can discover the name of the default collection used by fn:collection()
with no arguments in an XQuery expression. Returns the URI of the default collection.

Parameters

uri

A URI specifying the name of the collection.

C++

void XmlQueryContext::setDefaultCollection(const std::string &uri)
std::string XmlQueryContext::getDefaultCollection() const

Java

public void setDefaultCollection(String uri)

Python

$queryContext->setDefaultCollection($uri);

Perl

$queryContext->setDefaultCollection($uri);

PHP

$queryContext->setDefaultCollection($uri);

APPENDIX B ■ BDB XML API REFERENCE 319

6668appb.qxd 7/18/06 2:37 PM Page 319

XmlQueryContext::setNamespace
Maps the specified URI to the specified namespace prefix. Each API provides a corresponding
getNamespace method.

Parameters

prefix

The namespace prefix.

uri

The namespace URI.

C++

void XmlQueryContext::setNamespace(const std::string &prefix, const std::string &uri);
std::string XmlQueryContext::getNamespace(const std::string &prefix)

Java

public void setNamespace(String prefix, String uri)

Python

XmlQueryContext.setNamespace(prefix, uri)

Perl

$queryContext->setNamespace($prefix, $uri);

PHP

$queryContext->setNamespace($prefix, $uri);

XmlQueryContext::setBaseURI
Sets/gets the base URI used for relative paths in query expressions. For example, a base URI of
file:///export/expression and a relative path of ../another/expression resolve to file:///
export/another/expression.

Parameters

baseURI

The base URI as a string.

APPENDIX B ■ BDB XML API REFERENCE320

6668appb.qxd 7/18/06 2:37 PM Page 320

C++

void XmlQueryContext::setBaseURI(const std::string &baseURI)
std::string XmlQueryContext::getBaseURI()

Java

public void setBaseURI(String baseURI)

Python

XmlQueryContext.setBaseURI(baseURI)

Perl

$queryContext->setBaseURI($string);

PHP

$queryContext->setBaseURI($string);

XmlQueryContext::setEvaluationType
Enables the application to set the query evaluation type to eager or lazy. Eager evaluation means
that the whole query is executed and its resultant values derived and stored in memory before eval-
uation of the query is completed. Lazy evaluation means that minimal processing is performed
before the query is completed, and the remaining processing is deferred until the result set is enu-
merated. As each call to XmlResults::next is called, the next resultant value is determined. Each API
provides a corresponding getEvaluationType method.

Parameters

type

The evaluation type must be specified as either of the following:

Type Description

XmlQueryContext::Eager The query is executed with resulting values determined and stored in
memory before the query returns. This is the default.

XmlQueryContext::Lazy The values resulting from a query are not determined or stored in
memory until the API refers to them by iterating the result set. This
means that a query uses less time and processing.

APPENDIX B ■ BDB XML API REFERENCE 321

6668appb.qxd 7/18/06 2:37 PM Page 321

C++

void XmlQueryContext::setEvaluationType(EvaluationType type)
EvaluationType XmlQueryContext::getEvaluationType()

Java

public void setEvaluationType(int type)

Python

XmlQueryContext.setEvaluationType(type)

Perl

$queryContext->setEvaluationType($type);

PHP

$queryContext->setEvaluationType($type);

XmlQueryContext::setReturnType
The XmlQueryContext::setReturnType method enables the application to define whether the query
should return live or dead document values. Each API provides an accompanying getReturnType
method.

Parameters

type

The type parameter specifies which documents or values to return and must be set to one of the
following values:

Type Description

XmlQueryContext::LiveValues Query results are a reference to the data within the database.

XmlQueryContext::DeadValues Query results are a copy of the data from the database.

C++

void XmlQueryContext::setReturnType(ReturnType type)
ReturnType XmlQueryContext::getReturnType()

APPENDIX B ■ BDB XML API REFERENCE322

6668appb.qxd 7/18/06 2:37 PM Page 322

Java

public void setReturnType(int type)

Python

XmlQueryContext.setReturnType(type)

Perl

$queryContext->setReturnType($type);

PHP

$queryContext->setReturnType($type);

XmlQueryContext::setVariableValue
Creates an externally declared XQuery variable by binding the specified value or sequence of values
to the specified variable name. The XmlQueryContext::setVariableValue method can be called at
any time during the life of the application. Each API provides a corresponding getVariableValue
method.

Parameters

name

The name of the variable to bind. Within the XQuery query, the variable can be referenced by using
the normal $name syntax.

value

The value to bind to the named variable. If value is an XmlResults object, a sequence of values is
bound to the variable.

C++

void XmlQueryContext::setVariableValue(const std::string &name,
const XmlValue &value)

bool XmlQueryContext::getVariableValue(const std::string &name, XmlValue &value)
void XmlQueryContext::setVariableValue(const std::string &name,

const XmlResults &value)
bool XmlQueryContext::getVariableValue(const std::string &name, XmlResults &value)

Java

public void setVariableValue(String name, XmlValue value)

APPENDIX B ■ BDB XML API REFERENCE 323

6668appb.qxd 7/18/06 2:37 PM Page 323

Python

XmlQueryContext.setVariableValue(name, value)

Perl

$queryContext->setVariableValue($name, $value);

PHP

$queryContext->setVariableValue($name, $value);

XmlQueryExpression
An XmlQueryExpression represents a parsed XQuery expression, enabling the cost of query parsing
and optimization to be amortized over many evaluations. An XmlQueryExpression is created by a call
to XmlManager::prepare.

XmlQueryExpression::execute
Evaluates (runs) an XQuery query that was previously prepared by XmlManager::prepare and returns
an XmlResults set.

There are two basic forms of this method: one that takes an XmlValue object and another that
does not. For methods that do not take an XmlValue, the XQuery must restrict the scope of the query
by using either the collection() or the doc() XQuery navigation functions, or else an exception is
thrown. For those forms of this method that take an XmlValue, the query is applied against that
object.

Parameters

txn

If the operation is to be transaction-protected, the txn parameter is an XmlTransaction handle
returned from XmlManager::createTransaction.

queryContext

The XmlQueryContext to use for this evaluation.

contextItem

The XmlValue object to perform the query against.

flags

This parameter must be set to 0 or by bitwise inclusively OR’ing together one or more of the follow-
ing values:

APPENDIX B ■ BDB XML API REFERENCE324

6668appb.qxd 7/18/06 2:37 PM Page 324

Flag Description

DBXML_LAZY_DOCS Retrieves the document lazily. That is, it retrieves document content
and document metadata only on an as-needed basis when reading the
document.

DB_DIRTY_READ This operation supports “degree 1 isolation”; that is, read operations
can return data that has been modified by other transactions but has
not yet been committed. Silently ignored if the DB_DIRTY_READ flag was
not specified when the underlying container was opened. This flag is
renamed to DB_READ_UNCOMMITTED in Berkeley DB 4.4 and later.

DB_DEGREE_2 This operation has “degree 2 isolation”. It provides for cursor stability
but not repeatable reads. Data items that have been previously read
by this transaction can be deleted or modified by other transactions
before this transaction completes. Silently ignored if the DB_DEGREE_2
flag was not specified when the underlying container was opened. This
flag is renamed to DB_READ_COMMITTED in Berkeley DB 4.4 and later.

DB_RMW Acquires write locks instead of read locks when doing the retrieval.
Setting this flag can eliminate deadlock during a read-modify-write
cycle by acquiring the write lock during the read part of the cycle so
that another thread of control acquiring a read lock for the same item,
in its own read-modify-write cycle, will not result in deadlock.

C++

XmlResults XmlQueryExpression::execute(XmlQueryContext &queryContext,
u_int32_t flags = 0)

XmlResults XmlQueryExpression::execute(const XmlValue &contextItem,
XmlQueryContext &queryContext, u_int32_t flags = 0)

XmlResults XmlQueryExpression::execute(XmlTransaction &txn,
XmlQueryContext &queryContext, u_int32_t flags = 0)

XmlResults XmlQueryExpression::execute(XmlTransaction &txn,
const XmlValue &contextItem,
XmlQueryContext &queryContext, u_int32_t flags = 0)

Java

public XmlResults execute([XmlTransaction txn,] [XmlValue contextItem,]
XmlQueryContext queryContext, [XmlDocumentConfig config])

Python

XmlQueryExpression.execute([txn,] [contextItem,] queryContext, flags=0)

Perl

$expression->execute([$txn,] [$contextItem,] $context [, $flags]);

APPENDIX B ■ BDB XML API REFERENCE 325

6668appb.qxd 7/18/06 2:37 PM Page 325

PHP

$expression->execute([$txn,] [$contextItem,] $context [, $flags]);

XmlQueryExpression::getQuery
Returns the query as a string.

C++

std::string XmlQueryExpression::getQuery() const

Java

public String getQuery()

Python

XmlQueryExpression.getQuery()

Perl

my $query = $expression->getQuery();

PHP

$query = $expression->getQuery();

XmlQueryExpression::getQueryPlan
Returns the query plan for the expression as a string.

C++

std:string XmlQueryExpression::getQueryPlan() const

Java

public String getQueryPlan()

Python

XmlQueryExpression.getQueryPlan()

APPENDIX B ■ BDB XML API REFERENCE326

6668appb.qxd 7/18/06 2:37 PM Page 326

Perl

my $plan = $expression->getQueryPlan();

PHP

$plan = $expression->getQueryPlan();

XmlResults
The XmlResults class encapsulates the results of a query or other lookup operation as a collection
of XmlValue objects.

An XmlResults object is created by executing a query or calling XmlIndexLookup::execute.
A query is performed in several ways: XmlManager::query can be used for one-shot queries, and
XmlManager::prepare can be used to create an XmlQueryExpression object for use in repeated
queries. The class provides an iteration interface through the XmlResults::next method.

XmlResults::add
Adds the specified XmlValue to the end of the result set. Note that if the XmlResults object was
created as the result of a lazy evaluation, this method throws an exception. This method is used
primarily for application resolution of collections in queries (see XmlResolver and XmlManager::
createResults).

C++

void XmlResults::add(const XmlValue &value)

Java

public void add(XmlValue value)

Python

XmlResults.add(value)

Perl

$results->add($value);

PHP
The PHP interface does not support this method.

APPENDIX B ■ BDB XML API REFERENCE 327

6668appb.qxd 7/18/06 2:37 PM Page 327

XmlResults::hasNext
Returns true if there is another element in the result set.

C++

bool XmlResults::hasNext()

Java

public boolean hasNext()

Python

XmlResults.hasNext()

Perl

my $bool = $results->hasNext();

PHP

$bool = $results->hasNext();

XmlResults::hasPrevious
Returns true if there is a previous element in the result set.

C++

bool XmlResults::hasPrevious()

Java

public boolean hasPrevious()

Python

XmlResults.hasPrevious()

Perl

my $bool = $results->hasPrevious();

APPENDIX B ■ BDB XML API REFERENCE328

6668appb.qxd 7/18/06 2:37 PM Page 328

PHP

$bool = $results->hasPrevious();

XmlResults::next
Retrieves (and returns, for some APIs) the next value in the result set. When no more values remain
in the result set, the XmlResults::next method returns false.

Parameters

value

The XmlValue into which the previous value in the result set is to be placed.

document

The XmlDocument into which the previous document in the result set is to be placed.

C++

bool XmlResults::next(XmlValue &value)
bool XmlResults::next(XmlDocument &document)

Java

public XmlValue next()

Python

XmlResults.next(value)
XmlResults.next(document)

Perl

my $value = new XmlValue;
$results->next($value);

my $value = new XmlValue ;
while ($results->next($value)) { ... }

PHP

$value = $results->next();
while ($results->hasNext()) { ... }

APPENDIX B ■ BDB XML API REFERENCE 329

6668appb.qxd 7/18/06 2:37 PM Page 329

XmlResults::peek
Retrieves (and returns, for some APIs) the current element in the result set without moving the
internal iterator. If the provided object is successfully populated, this method returns true; other-
wise, false is returned.

C++

bool XmlResults::peek(XmlValue &value)
bool XmlResults::peek(XmlDocument &document)

Java

public XmlValue peek()

Python

XmlResults.peek(value)
XmlResults.peek(document)

Perl

$results->peek($xmlvalue);

$results->peek($document);

PHP

$value = $results->peek($xmlvalue);

XmlResults::previous
Retrieves the previous value in the result set (and returns it, in the case of some APIs). When the
first value in the result set has been reached, the XmlResults::previous method returns false. This
method does not work for lazily evaluated results.

C++

bool XmlResults::previous(XmlValue &value)
bool XmlResults::previous(XmlDocument &document)

Java

public XmlValue previous()

APPENDIX B ■ BDB XML API REFERENCE330

6668appb.qxd 7/18/06 2:37 PM Page 330

Python

XmlResults.previous(value)
XmlResults.previous(document)

Perl

$results->previous($value);

PHP

$value = $results->previous();

XmlResults::reset
If a query was processed with eager evaluation, a call to the XmlResults::reset method resets the
result set iterator, so that a subsequent call to XmlResults::next method returns the first value in
the result set. If the query was processed with lazy evaluation, a call to XmlResults::reset method
throws an exception.

C++

void XmlResults::reset()

Java

public void reset()

Python

XmlResults.reset()

Perl

$results->reset();

PHP

$results->reset();

APPENDIX B ■ BDB XML API REFERENCE 331

6668appb.qxd 7/18/06 2:37 PM Page 331

XmlResults::size
If a query was processed with eager evaluation, a call to the XmlResults::size method returns
the number of values in the result set. If the query was processed with lazy evaluation, a call to
XmlResults::size throws an exception.

C++

size_t XmlResults::size()

Java

public int size()

Python

XmlResults.size()

Perl

my $size = $results->size();

PHP

$size = $results->size();

XmlStatistics
This class provides access to statistics for keys in a given index. Statistics are available for the total
number of keys currently in use by the specified index, as well as the total number of unique keys in
use by the index. The number of keys maintained for an index is a function of the number and size
of documents stored in the container, as well as of the type of index being examined.

XmlStatistics objects are instantiated by XmlContainer::lookupStatistics.

XmlStatistics::getNumberOfIndexedKeys
Returns the total number of keys contained by the index for which statistics are being reported.

C++

double XmlStatistics::getNumberOfIndexedKeys() const

APPENDIX B ■ BDB XML API REFERENCE332

6668appb.qxd 7/18/06 2:37 PM Page 332

Java

public double getNumberOfIndexedKeys()

Python

XmlStatistics.getNumberOfIndexedKeys()

Perl

my $numkeys = $statistics->getNumberOfIndexKeys();

PHP

$numkeys = $statistics->getNumberOfIndexKeys();

XmlStatistics::getNumberOfUniqueKeys
Returns the number of unique keys contained in the index for which statistics are being reported.
Keys do not equate to documents; there are likely to be many more keys than unique keys in the
index because a given key can appear multiple times—once for each document feature on each
document that it is referencing.

C++

double XmlStatistics::getNumberOfUniqueKeys() const

Java

public double getNumberOfUniqueKeys()

Python

XmlStatistics.getNumberOfUniqueKeys()

Perl

my $numkeys = $statistics->getNumberOfUniqueKeys();

PHP

$numkeys = $statistics->getNumberOfUniqueKeys();

APPENDIX B ■ BDB XML API REFERENCE 333

6668appb.qxd 7/18/06 2:37 PM Page 333

XmlTransaction
This class provides a transaction handle, encapsulating a Berkeley DB DbTxn object. Methods of the
XmlTransaction class are used to abort and commit the transaction. XmlTransaction handles are
provided to XmlContainer, XmlManager, and other objects that query and modify documents and
containers to transactionally protect those database operations. XmlTransaction objects that go
out of scope (or are otherwise deleted) without a commit or abort are implicitly aborted.

XmlTransaction objects are instantiated using XmlManager::createTransaction.

XmlTransaction::abort
Causes an abnormal termination of the transaction. All write operations previously performed
within the scope of the transaction are undone. Before this method returns, any locks held by the
transaction will have been released. In the case of nested transactions, aborting a parent transac-
tion causes all children (unresolved or not) of the parent transaction to be aborted. The handle
cannot be accessed again after an abort, regardless of its return.

C++

void XmlTransaction::abort()

Java

public void abort()

Python

XmlTransaction.abort()

Perl

$txn->abort();

PHP

$txn->abort();

XmlTransaction::commit
Ends the transaction. Container and document modifications made within the scope of the trans-
action are by default written to stable storage. The handle cannot be accessed after a commit,
regardless of its return. If the operation encounters an error, the transaction and all child transac-
tions are aborted.

APPENDIX B ■ BDB XML API REFERENCE334

6668appb.qxd 7/18/06 2:37 PM Page 334

Parameters

flags

This parameter must be set to 0 or to one of the following values:

Flag Description

DB_TXN_NOSYNC Does not synchronously flush the log. The transaction exhibits the atomicity,
consistency, and isolation (ACI) properties, but not durability (D). Database
integrity is maintained, but this transaction can be undone during recovery.

DB_TXN_SYNC Synchronously flushes the log. The transaction exhibits all the ACID properties.
This is the default.

C++

void XmlTransaction::commit(u_int32_t flags = 0)

Java

public void commit()

Python

XmlTransaction.commit(flags=0)

Perl

$txn->commit([$flags]);

PHP

$txn->commit();

XmlTransaction::createChild
The XmlTransaction::createChild method creates a child transaction of this transaction. Although
this child transaction is active (has been neither committed nor aborted), the parent transaction
cannot issue any operations except for XmlTransaction::commit or XmlTransaction::abort.

C++

XmlTransaction XmlTransaction::createChild(u_int32_t flags = 0)

APPENDIX B ■ BDB XML API REFERENCE 335

6668appb.qxd 7/18/06 2:37 PM Page 335

Java
The Java API does not support this method.

Python

XmlTransaction.createChild(flags=0)

Perl

my $txn2 = $txn->createChild([$flags]);

PHP
The PHP API does not support this method.

XmlTransaction::getDbTxn
The XmlTransaction::getDbTxn method returns a pointer to the DbTxn object encapsulated by this
XmlTransaction.

C++

DbTxn *XmlTransaction::getDbTxn()

Java

public Transaction getTransaction()

Python

XmlTransaction.getDbTxn()

Perl

$dbtxn = $txn->getDbTxn();

PHP
This method is not yet supported by the PHP API.

XmlUpdateContext
This class encapsulates the context data used by update operations performed against a container.
XmlUpdateContext objects are instantiated using XmlManager::createUpdateContext.

APPENDIX B ■ BDB XML API REFERENCE336

6668appb.qxd 7/18/06 2:37 PM Page 336

XmlUpdateContext::setApplyChangesToContainers
This setting controls whether modifications made during an update caused by XmlModify::execute
are written to the corresponding XmlContainer. When true (the default), changes are written to the
container. This allows modifications to be grouped before being written, as well as modifications
that are not written to a container at all.

C++

void XmlUpdateContext::setApplyChangesToContainers(bool applyChanges)
bool XmlUpdateContext::getApplyChangesToContainers()

Java

public void setApplyChangesToContainers(boolean applyChanges)

Python

XmlUpdateContext.setApplyChangesToContainers([applyChanges])

Perl

$context->setApplyChangesToContainers($bool);

PHP

$context->setApplyChangesToContainers($bool);

XmlValue
XmlValue is a broad value class, storing the value of a node in an XML document. Because the class
encapsulates many value types, methods enable testing and conversion of data types. The class also
provides some DOM-like navigation methods for retrieving subsequent values from nodes.

The value type returned by the constructor (XmlValue::Type) is determined by the type of value
passed (STRING for std::string or const char*, BOOLEAN for bool, and so on) as well as an XmlDocument.

The XmlValue::is* methods permit type tests, whereas XmlValue::as* methods allow type
conversion. For XmlValue::Type of NODE, XmlValue::get* methods permit retrieval of node names;
values, namespace URIs and prefixes; and parent, child, and sibling nodes.

Parameters

value

The value for the XmlValue object.

APPENDIX B ■ BDB XML API REFERENCE 337

6668appb.qxd 7/18/06 2:37 PM Page 337

document

An XmlDocument object to be used as the value.

type

Any of the XmlValue types. They are listed as follows, and most correspond to the XML schema data
types (several are added by XQuery):

Data Type Description

XmlValue::NONE No type.

XmlValue::NODE A general node type.

XmlValue::ANY_SIMPLE_TYPE Any of the primitive datatypes.

XmlValue::ANY_URI An absolute or relative URI.

XmlValue::BASE_64_BINARY Base 64–encoded binary data.

XmlValue::BINARY Binary data.

XmlValue::BOOLEAN An XML schema boolean value.

XmlValue::DATE A date in dateTime format (ISO 8601), specifying a day
(without a time of day).

XmlValue::DATE_TIME A dateTime value.

XmlValue::DAY_TIME_DURATION A time duration in PnYnMnDTnHnMnS format (ISO 8601).

XmlValue::DECIMAL A decimal number (arbitrary precision); this is the primitive
number type within BDB XML.

XmlValue::DOUBLE A 64-bit float.

XmlValue::DURATION A duration value, either of dates or times.

XmlValue::FLOAT A 32-bit float.

XmlValue::G_DAY A recurring Gregorian day value, such as “5th of the month,”
in the ---DD format (ISO 8601).

XmlValue::G_MONTH A recurring Gregorian day of the year, such as an annual
holiday, in the --MM format.

XmlValue::G_MONTH_DAY A day recurring on a specific day of the year, such as May 3rd,
in the --MM-DD format.

XmlValue::G_YEAR A Gregorian calendar year in the CCYY format.

XmlValue::G_YEAR_MONTH A specific month in a specific Gregorian year, specified as
CCYY-MM.

XmlValue::HEX_BINARY Hex-encoded binary data (octets).

XmlValue::NOTATION A notation XML attribute type.

XmlValue::QNAME An XML qualified name (one that includes a namespace and
a local part).

XmlValue::STRING A character string.

XmlValue::TIME A daily-recurring instant of time, specified hh:mm:ss.sss.

XmlValue::YEAR_MONTH_DURATION A duration with year and month parts only.

XmlValue::UNTYPED_ATOMIC A pseudo-type for all untyped (via a schema) XML data.

APPENDIX B ■ BDB XML API REFERENCE338

6668appb.qxd 7/18/06 2:37 PM Page 338

C++

#include <DbXml.hpp>

class DbXml::XmlValue {
public:
XmlValue();
XmlValue(const std::string &value);
XmlValue(const char *value);
XmlValue(double value);
XmlValue(bool value);
XmlValue(XmlDocument &value);
XmlValue(Type type,const std::string &value);
XmlValue(Type type,const XmlData &data);

virtual ~XmlValue();
XmlValue(const XmlValue &);
XmlValue &operator=(const XmlValue &);

Type getType() const;

bool isType(XmlValue::Type type) const
bool isNumber() const;
bool isString() const;
bool isBoolean() const;
bool isBinary() const;
bool isNode() const;

bool isNull() const;

double asNumber() const;
std::string asString() const;
bool asBoolean() const;
bool asBinary() const;
DOMNode *asNode() const;
const XmlDocument &asDocument() const;

bool operator==(const XmlValue &v) const
bool equals(const XmlValue &v) const;

std::string getNodeName() const
std::string getNodeValue() const
std::string getNamespaceURI() const
std::string getPrefix() const
std::string getLocalName() const
short getNodeType() const
XmlValue getParentNode() const
XmlValue getFirstChild() const
XmlValue getLastChild() const
XmlValue getPreviousSibling() const
XmlValue getNextSibling() const
XmlResults getAttributes() const
XmlValue getOwnerElement() const
...

};

APPENDIX B ■ BDB XML API REFERENCE 339

6668appb.qxd 7/18/06 2:37 PM Page 339

Java

public XmlValue([int type,] [XmlValue value])
public XmlValue([int type,] [String value])
public XmlValue([XmlDocument document])
...

public int getType()
public boolean isNumber()
public boolean isString()
public boolean isNode()
...

public String asString()
public boolean asBoolean()
public String getNodeName()
public String getNodeValue()
public String getNamespaceURI()
public String getPrefix()
public String getLocalName()
public short getNodeType()
public XmlValue getParentNode()
public XmlValue getFirstChild()
public XmlValue getLastChild()
public XmlValue getPreviousSibling()
public XmlValue getNextSibling()
public XmlResults getAttributes()
public XmlValue getOwnerElement()
...

Python

XmlValue([type,] [value])
XmlValue([document])
...

XmlValue.getType()
XmlValue.isNumber()
XmlValue.isString()
XmlValue.isNode()
...

XmlValue.asString()
XmlValue.asBoolean()
XmlValue.getNodeName()
XmlValue.getNodeValue()
XmlValue.getNamespaceURI()
XmlValue.getPrefix()
XmlValue.getLocalName()
XmlValue.getNodeType()
XmlValue.getParentNode()
XmlValue.getFirstChild()
XmlValue.getLastChild()
XmlValue.getPreviousSibling()

APPENDIX B ■ BDB XML API REFERENCE340

6668appb.qxd 7/18/06 2:37 PM Page 340

XmlValue.getNextSibling()
XmlValue.getAttributes()
XmlValue.getOwnerElement()
...

Perl

my $v = new XmlValue()
my $v = new XmlValue(value);
my $v = new XmlValue(type, value);
my $v = new XmlValue(document);

my $type = $v->getType();
my $type = $v->getTypeName();

my $boolean = $v->isType(type);
my $boolean = $v->isBoolean();
my $boolean = $v->isNumber();
my $boolean = $v->isString();
my $boolean = $v->isNode();

my $number = $v->asNumber();
my $string = $v->asString();
my $document = $v->asDocument();

...

my $string = $v->getNodeName() ;
my $string = $v->getNodeValue() ;
my $string = $v->getNamespaceURI() ;
my $string = $v->getPrefix() ;
my $string = $v->getLocalName() ;
my $type = $v->getNodeType() ;
my $xmlvalue = $v->getParentNode() ;
my $xmlvalue = $v->getFirstChild() ;
...

PHP

$v = new XmlValue()
$v = new XmlValue(value);
$v = new XmlValue(type, value);
$v = new XmlValue(document);

$type = $v->getType();
$type = $v->getTypeName();

$boolean = $v->isType(type);
$boolean = $v->isBoolean();
$boolean = $v->isNumber();
$boolean = $v->isString();
$boolean = $v->isNode();

APPENDIX B ■ BDB XML API REFERENCE 341

6668appb.qxd 7/18/06 2:37 PM Page 341

$number = $v->asNumber();
$string = $v->asString();
$document = $v->asDocument();

...

$string = $v->getNodeName() ;
$string = $v->getNodeValue() ;
$string = $v->getNamespaceURI() ;
$string = $v->getPrefix() ;
$string = $v->getLocalName() ;
$type = $v->getNodeType() ;
$xmlvalue = $v->getParentNode() ;
$xmlvalue = $v->getFirstChild() ;
...

APPENDIX B ■ BDB XML API REFERENCE342

6668appb.qxd 7/18/06 2:37 PM Page 342

XQuery Reference

This brief XQuery reference includes alphabetical tables for expression keywords and opera-
tors, built-in functions, and data types. Please see the XQuery candidate recommendation at
http://www.w3.org/TR/xquery/ for more details.

Expressions
Table C-1 contains an alphabetical listing of mode XQuery operators and keywords. Each entry
includes a brief (and general) usage syntax and description of the behavior. Not included are built-in
character references (&, <, and so on), rare keywords, alternate forms, examples, special cases,
operation function definitions that back up operators, or varying behaviors based on context and
data types. Where a sample usage is redundant and lengthy (such as with prolog declarations), no
column value is included. Where operators take sequences as context, remember that a sequence
can be one item (a singleton).

Table C-1. XQuery Expression Operators, Keywords, and Symbols

Expression Usage Description and Notes

' 'characters' Apostrophe; surrounds string literals; double it to escape;
can contain newlines

- expr - expr Subtraction operator

!= seq != seq General inequality comparison; tests whether values in
either sequence are unequal

" "characters" Quotation mark; surrounds string literals; double it to
escape; can contain newlines

$ $variable Denotes a variable where variable names are a QName value
(see Table C-3)

&# &#N; Decimal character reference; the integer specifying a
Unicode code value

&#x &#xH; Hexadecimal character reference; the number specifying a
Unicode code value

() (expr) Parentheses; group expressions denote function arguments;
empty parentheses denote empty sequences

(: :) (:characters:) XQuery comment (not an XML comment)

* expr * expr Multiplication operator

Continued

343

A P P E N D I X C

6668appc.qxd 7/18/06 2:56 PM Page 343

Table C-1. Continued

Expression Usage Description and Notes

* * Wildcard name test; tests a node name within a path
expression, matching any

, expr, expr Comma; separates items in a sequence and some
expression parts

. . Current context item

.. .. Parent node; navigation shortcut for parent::node()

/ / step Navigation step separator in a path; root when at the
start of a path (fn:root())

// // step Navigation step operator in a path; shortcut for
/descendant-or-self::node()

: : Colon; separates local and namespace in names

:: axis::nodetest Axis separator; separates axis from node test in
navigation steps

:= let $var := expr Assignment operator used with the let keyword

? type? Cardinality indicator for type of a sequence; indicates
zero or one values

@ @nodetest Shortcut for the attribute axis, attribute

[] step[expr] Predicate symbol; encloses a filter expression for a test in
a path

{ } { expr } Subexpression symbol; encloses a subexpression for
some keywords (declarations, node constructors);
double up to escape

| node* | node* Union operator; shortcut for union

+ expr + expr Addition operator

+ type+ Cardinality indicator; indicates one or more values after
a type name (as in parameters in a function declaration)

< seq < seq General less-than comparison; tests whether any value
on left is less than any value on right

< /> XML element constructor; the only difference from real
XML is that curly braces ({ }) enclose an XQuery
expression; see element

<!-- --> <!-- chars --> XML comment constructor

<![CDATA[]]> <![CDATA[chars]]> CDATA section constructor

<< expr << expr “Before” node order test; tests whether one node is
before another in document order

<= seq <= seq General less-than-or-equal-to comparison; tests whether
any value on the left is less than or equal to any value on
the right

= seq = seq General equality comparison; tests whether any value on
the left is equal to any value on the right

> seq > seq General greater-than comparison; tests whether any
value on the left is greater than any value on the right

>= seq >= seq General greater-than-or-equal-to comparison; tests
whether any value on the left is greater than or equal to
any value on the right

<name attributes>
content</name>

APPENDIX C ■ XQUERY REFERENCE344

6668appc.qxd 7/18/06 2:56 PM Page 344

Expression Usage Description and Notes

>> expr >> expr “After” node order test; tests whether one
node is after another in document order

ancestor ancestor::nodetest Ancestor navigation axis

ancestor-or-self Navigation axis matching the current context
node and its ancestors

and expr and expr Logical and operator; tests whether both
expressions evaluate to true

as as Used where variables are declared (FLWOR,
declare variable, and so on) to give it a type

ascending ascending Ascending order order by keyword in FLWOR
expressions

at at Creates a variable for keeping position in
FLWOR expressions

attribute attribute::nodetest Attribute navigation axis

attribute() attribute name { expr } XML attribute constructor

case case Used by typeswitch

cast as expr cast as type Attempts to cast an expression as a type

castable as expr castable as type Tests whether an expression can be cast as a
type

child child::nodetest Child navigation axis

comment comment { expr } XML comment constructor

declare base-uri Sets the base Uniform Resource Identifier
(URI); used in the prolog

Sets the default element namespace; used in
the prolog

Sets the default namespace for all functions

declare function Declares a user-defined function; used at the
end of the prolog

declare namespace Sets a namespace; used in the prolog

declare validation Declares a validation mode for the validate
operator and XML constructors

declare variable Declares a global variable; can specify an
external parameter with external keyword

declare xmlspace Sets behavior for outer white space to strip
or preserve

descendant descendant::nodetest Descendant navigation axis

descendant-or-self Navigation axis matching the current context
node and all its descendants

descending descending Descending order order by keyword in
FLWOR expressions

div expr div expr Division operator; the slash (/) is a separator
for paths only

document document { expr } XML document node constructor

Continued

descendant-or-
self::nodetest

declare default
function namespace

declare default
element namespace

ancestor-or-
self::nodetest

APPENDIX C ■ XQUERY REFERENCE 345

6668appc.qxd 7/18/06 2:56 PM Page 345

Table C-1. Continued

Expression Usage Description and Notes

element element name { expr } XML element constructor

empty greatest empty greatest Used as keyword for order by in FLWOR
expressions; treats the empty sequence as
greatest

empty least empty least Used as keyword for order by in FLWOR
expressions; treats the empty sequence as
least

eq expr eq expr Value equality comparison

every Quantification condition test; true if every
item satisfies the condition

except node* except node* Difference set operator; computes the
difference between two node sequences

following following::nodetest “After” navigation axis; matches all nodes in
the same document that come after it in
document order

following-sibling Navigation axis matching all siblings that
follow the current node in document order

for for $var in expr at $pos Iteration clause in a FLWOR expression;
introduces one or more iterated variables

ge expr ge expr Greater-than-or-equal-to value comparison

gt expr gt expr Greater-than value comparison

idiv expr idiv expr Integer division operator

if Constructs a conditional expression; else
if is a nested conditional

import module Imports an external module; used in the
prolog

import schema Imports an external schema; used in the
prolog

instance of expr instance of type Tests whether an expression matches a type

intersect node* intersect node* Set intersection operator; returns all nodes
that are in both sequences

is node is node Node equality; tests whether two nodes are
equal (using node identity)

le expr le expr Less-than-or-equal-to value comparison

let let $var := expr Variable declaration clause in a FLWOR
expression

lt expr lt expr Less-than value comparison

mod expr mod expr Modulo operator (modulo is the
“remainder” after a division operation);
useful for result alternation

module Begins a library module

namespace namespace prefix { expr } XML namespace constructor

module namespace prefix
= "namespace";

if (expr) then expr else
expr

following-sibling::
nodetest

every $var in expr
satisfies expr

APPENDIX C ■ XQUERY REFERENCE346

6668appc.qxd 7/18/06 2:56 PM Page 346

Expression Usage Description and Notes

ne expr ne expr Not-equal value comparison

or expr or expr Logical or operator; tests whether either
value is true

order by order by sortkey modifier Sorts the results of a FLWOR expression
given one or more sort keys and sort
modifiers

parent parent::nodetest Parent navigation axis; matches the parent
node of the current context node

preceding prededing::nodetest Navigation axis matching all nodes before
the current context node in the same
document

preceding-sibling Navigation axis matching all siblings before
the current node

return return expr Sets the result for each iteration of a
FLWOR expression

self self::nodetest Current node navigation axis; same as the
period (.)

some A quantification condition test; true if any
value satisfies the condition

text text { expr } XML text node constructor

to expr to expr Integer range operator; similar to integer
.. integer in other languages

treat as expr treat as type Casts an expression’s type without
changing its value

typeswitch typeswitch (expr) case ... Sets a value based on type of an expression

union node* union node* Set union operator; returns nodes in both
sequences without duplicates

where where condition Specifies a condition expression in FLWOR
expressions

validate Validates a node expression against an XML
schema

Functions
This section provides an alphabetical list of the XQuery built-in functions. All standard XQuery/XPath
2.0 functions exist in the namespace fn, which is omitted in Table C-2. Because what precedes a func-
tion does not affect its operation, the first column names the function and provides its sample usage.
Example usages are brief (and general) and do not reflect all usages, returned data types, or behavior
based on different data types. Many functions have a zero argument usage that operates on current
context items (as when used in path predicates such as string()) or empty arguments that default
to a static value. Please see the XQuery specification for mode details and see the XPath function
reference at http://www.w3.org/TR/xpath-functions.

validate mode context
{ node }

some $var in expr
satisfies expr

preceding-sibling::
nodetest

APPENDIX C ■ XQUERY REFERENCE 347

6668appc.qxd 7/18/06 2:56 PM Page 347

Table C-2. XQuery Built-In Functions

Function/Usage Description

abs(number) Computes the absolute value of the
argument

adjust-dateTime-to-timezone(dateTime, time zone) Returns the date (xs:dateTime) adjusted to
a time zone

adjust-date-to-timezone(date, time zone) Returns the date (xs:date) adjusted to a
time zone (xdt:dayTimeDuration)

adjust-time-to-timezone(time, time zone) Returns the time adjusted to a time zone

avg(seq) Computes the average value for the
sequence

base-uri(node) Returns the base URI for a node

boolean(seq) Returns the boolean value for its
argument

ceiling(number) Returns the value rounded to the least
integer greater than the number

codepoints-to-string(sequence) Returns a string of Unicode characters for
the provided integer code points

collection(string) Sets input to a collection of nodes; sets
input to read from a container in BDB
XML

compare(string1, string2) Compares equality of strings

concat(string1, ...) Returns strings concatenated

contains(string1, string2) Tests whether the first string contains the
second string

count(seq) Returns the number of items in a
sequence

current-date() Returns the current date

current-dateTime() Returns the current date and time

current-time() Returns the current time

data(seq) Converts nodes in a sequence to atomic
values (atomization)

day-from-date(date) Returns the day for the provided xs:date
value

day-from-dateTime(dateTime) Returns the day for the provided
xs:dateTime value

days-from-duration(duration) Returns the days in an
xdt:dayTimeDuration value

deep-equal(seq, seq) Tests sequences for deep equality; every
item equal in the same order

default-collation() Returns the default collation definition;
used for string order

distinct-values(seq) Removes duplicate (atomic) values from a
sequence

doc(string) Opens an XML document and returns its
document node

document-uri(node) Returns the document URI of a node

APPENDIX C ■ XQUERY REFERENCE348

6668appc.qxd 7/18/06 2:56 PM Page 348

Function/Usage Description

empty(seq) Tests whether a sequence contains zero items

ends-with(string1, string2) Tests whether the first string ends with the second
string

error(item) Terminates the query processing and sets an error

escape-uri(string, boolean) URI-escapes the string; the boolean sets whether to
escape special characters

exactly-one(seq) Causes an error if a sequence is not a singleton

exists(seq) Tests whether a sequence contains at least one item

false() Boolean false

floor(number) Returns the greatest integer less than the number

hours-from-dateTime(dateTime) Returns the hours for an xs:dateTime value

hours-from-duration(duration) Returns the hours for an xdt:dayTimeDuration value

hours-from-time(time) Returns the hours for an xs:time value

id(string) Returns the element with a given ID value;
unsupported in BDB XML

idref(string) Returns the node with the given IDREF value;
unsupported in BDB XML

implicit-timezone() Returns the default time zone

index-of(seq, item) Finds the position of the item in the sequence

in-scope-prefixes(element) Returns a sequence of namespace prefixes for the
element

insert-before(seq1, position, seq2) Constructs a new sequence with the first sequence
inserted into the second sequence at the position (as
an integer)

lang(string) Tests the current context node for the given language
(specified by an xml:lang attribute)

last() Returns the position of the last item in the current
context sequence (its length)

local-name(node) Returns the local-name of a node

local-name-from-QName(stringQName) Returns the local-name part of a QName

lower-case(string) Converts a string to lowercase

matches(string, pattern) Tests the string using the regular expression pattern

max(seq) Returns the maximum numeric value in a sequence

min(seq) Returns the minimum numeric value in a sequence

minutes-from-dateTime(dateTime) Returns the minutes for an xs:dateTime value

minutes-from-duration(duration) Returns the minutes for an xdt:dayTimeDuration
value

minutes-from-time(time) Returns the minutes for an xs:time value

month-from-date(date) Returns the months for an xs:date value

month-from-dateTime(dateTime) Returns the months for an xs:dateTime value

months-from-duration(duration) Returns the months for an xdt:yearMonthDuration
value

name(node) Returns a node’s name as a string

Continued

APPENDIX C ■ XQUERY REFERENCE 349

6668appc.qxd 7/18/06 2:56 PM Page 349

Table C-2. Continued

Function/Usage Description

namespace-uri(node) Returns a node’s namespace URI

namespace-uri-for-prefix(element, string) Gets the namespace URI for an element provided a
prefix

namespace-uri-from-QName(QName) Returns the namespace URI part of the xs:QName

node-name(node) Returns a node’s name as an xs:QName value

normalize-space(string) Returns a string with outer white space removed
and consecutive white space consolidated

normalize-unicode(string) Returns a string after Unicode normalization

not(expr) Logical negation; returns the inverse of the
boolean result of the expression

number(expr) Converts an expression to an xs:double

one-or-more(seq) Causes an error on an empty sequence; otherwise,
returns the sequence

position() Returns the position of the current context item
within its sequence

QName(namespace, local name) Returns a QName provided with a namespace and
local name

remove(seq, position) Removes an item from a sequence and returns the
sequence

replace(string, pattern1, pattern2) Returns a string with the first pattern replaced with
the second pattern

resolve-QName(string, element) Returns an xs:QName using the qualified name and
element for namespaces

resolve-uri(string) Returns the absolute URI given a URI

reverse(seq) Returns the sequence reversed

root(node) Returns the root node for the tree to which the
node belongs

round(number) Returns the number rounded to the closest integer,
half rounded up

round-half-to-even(number) Returns the number rounded to the closest integer,
half rounded even; a second argument allows for
decimal precision

seconds-from-dateTime(date) Returns the seconds part of an xs:dateTime value

seconds-from-duration(duration) Returns the seconds for an xdt:dayTimeDuration
value

seconds-from-time(time) Returns the seconds for an xs:time value

starts-with(string1, string2) Tests whether the first string starts with the second
string

string(item) Converts the item to xs:string

string-join(seq, delim) Returns a string with the sequence of strings joined
with the delimiter

string-length(string) Returns the length of a string

string-to-codepoints(string) Returns a sequence of integers for each Unicode
code point in a string

APPENDIX C ■ XQUERY REFERENCE350

6668appc.qxd 7/18/06 2:56 PM Page 350

Function/Usage Description

subsequence(seq, position1, position2) Returns the subsequence of a sequence, by using a
start and end position, to the sequence’s end if no
second position is provided

substring(string, position1, position2) Returns a substring of a string, by using a start and
end position, or to the end of the string if no second
position is provided

substring-after(string1, string2) Returns the substring of the first string that occurs
after the first occurrence of the second string

substring-before(string1, string2) Returns the substring of the first string that occurs
before the first occurrence of the second string

sum(seq) Returns the sum of all values in a sequence

timezone-from-date(date) Returns the time zone for the xs:date value

timezone-from-dateTime(dateTime) Returns the time zone part of an xs:dateTime value

timezone-from-time(time) Returns the time zone for the xs:time value

tokenize(string1, string2) Returns a sequence of the first string split using the
second string

trace(seq, string) Calls a debugging routine; the sequence is a return
value; the second is a trace message

translate(string1, string2, string3) Replaces in the first string the characters in the
second string with the corresponding characters in
the third string

true() Boolean true

unordered(seq) Gives to the query processor a hint that the
sequence does not need to be maintained

upper-case(string) Returns the string with all characters converted to
uppercase

year-from-date(date) Returns the year part of an xs:date value

year-from-dateTime(dateTime) Returns the year for an xs:dateTime value

years-from-duration(duration) Returns the years for an xdt:yearMonthDuration
value

zero-or-one(seq) Causes an error if a sequence contains more than
one item

Data Types
XQuery data types belong to a type hierarchy described briefly in Chapter 7, “XQuery with BDB
XML.” They are listed in Table C-3 with a brief description. Types that have parentheses after their
names have corresponding type tests that can usually be used with arguments (to test an item) or as
void (as a context test). All types (except abstracts and where noted) can be constructed; node types
use the expression keyword of the same name (that is, element name { expr }) using the function of
the same name as the type, and atomic types have corresponding constructor functions of the same
name as the type that take an item (some with restricted atomic types; most with any) as argument.
Types in the xs namespace are XML schema types used by XQuery, and xdt types are those intro-
duced by XQuery/XPath 2.0 (XPath Data Types). Abstract types are listed first, node types are listed
next, and then atomic types are listed in postprefix alphabetical order.

APPENDIX C ■ XQUERY REFERENCE 351

6668appc.qxd 7/18/06 2:56 PM Page 351

■Note BDB XML optionally validates data types for XML that use an XML schema or Data Type Definition (DTD),
but type information is not stored within the database. Explicit casting is required within XQuery expressions to use
types, and indexes for a container need to be given proper types for those expressions to yield timely results.

Table C-3. XQuery Data Types

Type Description

item() Abstract; the basic XQuery type; all values are items; a sequence is
zero or more items

node() Abstract; any XML node; all node types descend from this type

xdt:anyAtomicType Abstract; any atomic type; all atomic types descend from this type

attribute() Attribute node

comment() Comment node

document-node() Document node

element() Element node

namespace() Namespace node

processing-instruction() Processing instruction node

text() Text node

xs:anyURI URI value

xs:base64Binary Base 64–encoded value

xs:boolean Boolean value; true or false

xs:byte Signed byte value (-128 to 127)

xs:date Calendar date value with year, month, day, and time zone

xs:dateTime Calendar time value with year, month, day, hour, minute, second,
and time zone

xdt:dayTimeDuration Duration value with day and time granularity (permits duration
comparisons)

xs:decimal Numeric fixed-point decimal value (128-bit)

xs:double Numeric double-precision floating point value (8-byte)

xs:duration Duration value with years, months, days, hours, minutes, and
seconds

xs:float Numeric single-precision floating-point value (4-byte)

xs:gDay Day in the Gregorian calendar

xs:gMonth Month in the Gregorian calendar

xs:gMonthDay Month and day in the Gregorian calendar

xs:gYear Year in the Gregorian calendar

xs:gYearMonth Month and year in the Gregorian calendar

xs:hexBinary Hex-encoded value

xs:ID XML ID value

xs:IDREF XML IDREF value

xs:IDREFS List of XML IDREF values

xs:int Signed 4-byte integer value

APPENDIX C ■ XQUERY REFERENCE352

6668appc.qxd 7/18/06 2:57 PM Page 352

Type Description

xs:integer Signed integer value

xs:language XML language value (represents an xml:lang attribute)

xs:long Signed 8-byte integer value

xs:Name Valid XML name value (prefix, colon, and local-name)

xs:NCName Nonqualified XML name; colons illegal

xs:negativeInteger Negative integer value

xs:nonNegativeInteger Zero or positive integer value

xs:nonPositiveInteger Zero or negative integer value

xs:normalizedString String with normalized white space

xs:NOTATION XML notation value

xs:positiveInteger Positive integer value

xs:QName Qualified XML name value (QName)

xs:short Signed 2-byte integer value

xs:string String value

xs:time Time value with hour, minute, second, and time zone

xs:token Token value (no spaces)

xs:unsignedByte Unsigned byte value (0 to 255)

xs:unsignedInt Unsigned integer value

xs:unsignedLong Unsigned long value

xs:unsignedShort Unsigned short value

xdt:untypedAtomic Untyped value given to all untyped XML data

xdt:yearMonthDuration Duration value with year and month (permits duration
comparisons)

APPENDIX C ■ XQUERY REFERENCE 353

6668appc.qxd 7/18/06 2:57 PM Page 353

6668appc.qxd 7/18/06 2:57 PM Page 354

Numbers and symbols
$ symbol

XQuery expressions, 343
& character

XQuery expressions, 343
0 argument

XmlManager class constructor, 49
1 option

db_checkpoint utility, 195

A
a option

db_archive utility, 194
db_deadlock utility, 194

abort command, 44
abort method, XmlTransaction, 334

C++ API, 122
abs function, XQuery, 348
abstract data types, XQuery, 351
add method, XmlResults, 327
addAlias method, XmlContainer, 53, 238
addAppendStep method, XmlModify, 312

C++ API, 120
Java API, 158
Perl API, 174
PHP API, 188
Python API, 137

addDefaultIndex method
XmlContainer class, 68, 240–241
XmlIndexSpecification class, 277

addIndex command, 40, 62, 65, 68
overview of BDB XML, 2, 4

addIndex method, XmlContainer, 239–240
adding indexes, 66
C++ API, 117
Java API, 155
Perl API, 171
PHP API, 186
Python API, 135

addIndex method, XmlIndexSpecification,
276–277

addInsertAfterStep method, XmlModify, 313
addInsertBeforeStep method, XmlModify, 314
addition operator, XQuery, 344
addRemoveStep method, XmlModify, 314
addRenameStep method, XmlModify, 315
address books

validation, 208
addUpdateStep method, XmlModify, 316

adjust-dateTime-to-timezone function, XQuery,
348

adjust-date-to-timezone function, XQuery, 348
adjust-time-to-timezone function, XQuery, 348
“After” navigation axis, XQuery, 346
“After” node order test, XQuery, 345
agile software, 24
aliases

addAlias method, 53, 238
removeAlias method, 255
setLogLevel method, 308

amp entity, XML, 205
ancestor axis, XPath, 218
ancestor elements, XML, 206
ancestor keyword, XQuery, 345
ancestor-or-self axis keyword

XPath, 218
XQuery, 345

and operator, XQuery, 345
anyAtomicType data type, XQuery, 352
anyURI data type, XQuery, 352
ANY_SIMPLE_TYPE data type, XmlValue, 338
ANY_URI data type, XmlValue, 338
Apache

Xerces C++, 25
API method and class reference

abort method, XmlTransaction, 334
add method, XmlResults, 327
addAlias method, XmlContainer, 238
addAppendStep method, XmlModify, 312
addDefaultIndex method

XmlContainer class, 240
XmlIndexSpecification class, 277

addIndex method
XmlContainer class, 239
XmlIndexSpecification class, 276

addInsertAfterStep method, XmlModify, 313
addInsertBeforeStep method, XmlModify,

314
addRemoveStep method, XmlModify, 314
addRenameStep method, XmlModify, 315
addUpdateStep method, XmlModify, 316
asXyz methods, XmlValue, 337
clearNamespaces method,

XmlQueryContext, 318
close method, DbEnv, 234
commit method, XmlTransaction, 334
createChild method, XmlTransaction, 335
createContainer method, XmlManager, 285
createDocument method, XmlManager, 287

Index

355

6668index.qxd 7/21/06 10:59 AM Page 355

createIndexLookup method, XmlManager,
288

createLocalFileInputStream method,
XmlManager, 289

createMemBufInputStream method,
XmlManager, 289

createModify method, XmlManager, 290
createQueryContext method, XmlManager,

291
createResults method, XmlManager, 292
createStdInInputStream method,

XmlManager, 293
createTransaction method, XmlManager, 293
createUpdateContext method, XmlManager,

295
createURLInputStream method,

XmlManager, 295
curPos method, XmlInputStream, 282
DbEnv class, 232–235

close method, 234
constructor, 233
open method, 233

DbXml class, 235–238
dbxml_version method, 237
get_version_xyz methods, 237
setLogCategory method, 235
setLogLevel method, 236

dbxml_version method, DbXml, 237
deleteDefaultIndex method

XmlContainer class, 244
XmlIndexSpecification class, 278

deleteDocument method, XmlContainer, 241
deleteIndex method

XmlContainer class, 243
XmlIndexSpecification class, 277

dumpContainer method, XmlManager, 296
execute method

XmlIndexLookup class, 270
XmlModify class, 316
XmlQueryExpression class, 324

existsContainer method, XmlManager, 297
fetchAllData method, XmlDocument, 261
find method, XmlIndexSpecification, 279
getAllDocuments method, XmlContainer,

245
getApplyChangesToContainers method,

XmlUpdateContext, 337
getBaseURI method, XmlQueryContext, 320
getContainer method, XmlIndexLookup, 271
getContainerType method, XmlContainer,

246
getContent method, XmlDocument, 262
getContentAsDOM method, XmlDocument,

263
getContentAsXmlInputStream method,

XmlDocument, 263
getDbEnv method, XmlManager, 297
getDbError method, XmlException, 270

getDbTxn method, XmlTransaction, 336
getDefaultCollection method,

XmlQueryContext, 319
getDefaultContainerFlags method,

XmlManager, 306
getDefaultContainerType method,

XmlManager, 307
getDefaultIndex method,

XmlIndexSpecification, 279
getDefaultPageSize method, XmlManager,

307
getDocument method, XmlContainer, 246
getEvaluationType method,

XmlQueryContext, 321
getExceptionCode method, XmlException,

270
getHighBound method, XmlIndexLookup,

272
getHome method, XmlManager, 298
getIndex method, XmlIndexLookup, 272
getIndexNodes method, XmlContainer, 248
getIndexSpecification method,

XmlContainer, 248, 258
getLowBound method, XmlIndexLookup, 273
getManager method, XmlContainer, 249
getMetaData method, XmlDocument, 264
getMetaDataIterator method,

XmlDocument, 264
getName method

XmlContainer class, 250
XmlDocument class, 265

getNamespace method, XmlQueryContext,
320

getNode method, XmlIndexLookup, 274
getNumberOfIndexedKeys method,

XmlStatistics, 332
getNumberOfUniqueKeys method,

XmlStatistics, 333
getNumDocuments method, XmlContainer,

250
getPageSize method, XmlContainer, 251
getParent method, XmlIndexLookup, 275
getQuery method, XmlQueryExpression, 326
getQueryPlan method, XmlQueryExpression,

326
getReturnType method, XmlQueryContext,

322
getVariableValue method, XmlQueryContext,

323
getXyz methods, XmlValue, 337
get_version_xyz methods

DbXml class, 237
hasNext method, XmlResults, 328
hasPrevious method, XmlResults, 328
isXyz methods, XmlValue, 337
loadContainer method, XmlManager, 299
lookupIndex method, XmlContainer, 252
lookupStatistics method, XmlContainer, 252

■INDEX356

6668index.qxd 7/21/06 10:59 AM Page 356

next method
XmlIndexSpecification class, 280
XmlMetaDataIterator class, 311
XmlResults class, 329

open method, DbEnv, 233
openContainer method, XmlManager, 300
peek method, XmlResults, 330
prepare method, XmlManager, 302
previous method, XmlResults, 330
putDocument method, XmlContainer, 253
query method, XmlManager, 302
readBytes method, XmlInputStream, 283
reindexContainer method, XmlManager, 304
removeAlias method, XmlContainer, 255
removeContainer method, XmlManager, 304
removeMetaData method, XmlDocument, 265
removeNamespace method,

XmlQueryContext, 318
renameContainer method, XmlManager, 305
replaceDefaultIndex method

XmlContainer class, 257
XmlIndexSpecification class, 281

replaceIndex method
XmlContainer class, 255
XmlIndexSpecification class, 280

reset method
XmlIndexSpecification class, 282
XmlMetaDataIterator class, 312
XmlResults class, 331

setAdoptEnvironment method,
XmlManagerConfig, 310

setAllowAutoOpen method,
XmlManagerConfig, 311

setAllowExternalAccess method,
XmlManagerConfig, 310

setAllowValidation method,
XmlContainerConfig, 260

setApplyChangesToContainers method,
XmlUpdateContext, 337

setBaseURI method, XmlQueryContext, 320
setContainer method, XmlIndexLookup, 271
setContent method, XmlDocument, 266
setContentAsDOM method, XmlDocument,

267
setContentAsXmlInputStream method,

XmlDocument, 267
setDefaultCollection method,

XmlQueryContext, 319
setDefaultContainerFlags method,

XmlManager, 306
setDefaultContainerType method,

XmlManager, 307
setDefaultPageSize method, XmlManager, 307
setEvaluationType method,

XmlQueryContext, 321
setGenerateName method,

XmlDocumentConfig, 269
setHighBound method, XmlIndexLookup, 272
setIndex method, XmlIndexLookup, 272

setIndexNodes method,
XmlContainerConfig, 261

setIndexSpecification method,
XmlContainer, 258

setLockMode method, XmlDocumentConfig,
269

setLogCategory method
DbXml class, 235
XmlManager class, 308

setLogLevel method
DbXml class, 236
XmlManager class alias, 308

setLowBound method, XmlIndexLookup, 273
setMetaData method, XmlDocument, 267
setName method, XmlDocument, 268
setNamespace method, XmlQueryContext,

320
setNode method, XmlIndexLookup, 274
setNodeContainer method,

XmlContainerConfig, 260
setParent method, XmlIndexLookup, 275
setReturnType method, XmlQueryContext, 322
setReverseOrder method,

XmlDocumentConfig, 269
setTransactional method,

XmlContainerConfig, 261
setVariableValue method, XmlQueryContext,

323
size method, XmlResults, 332
sync method, XmlContainer, 259
updateDocument method, XmlContainer, 259
upgradeContainer method, XmlManager, 308
verifyContainer method, XmlManager, 309
what method, XmlException, 270
XmlContainer class, 238–260

addAlias method, 238
addDefaultIndex method, 240
addIndex method, 239
deleteDefaultIndex method, 244
deleteDocument method, 241
deleteIndex method, 243
getAllDocuments method, 245
getContainerType method, 246
getDocument method, 246
getIndexNodes method, 248
getIndexSpecification method, 248, 258
getManager method, 249
getName method, 250
getNumDocuments method, 250
getPageSize method, 251
lookupIndex method, 252
lookupStatistics method, 252
putDocument method, 253
removeAlias method, 255
replaceDefaultIndex method, 257
replaceIndex method, 255
setIndexSpecification method, 258
sync method, 259
updateDocument method, 259

■INDEX 357

Find it faster at http://superindex.apress.com
/

6668index.qxd 7/21/06 10:59 AM Page 357

XmlContainerConfig class, 260–261
setAllowValidation method, 260
setIndexNodes method, 261
setNodeContainer method, 260
setTransactional method, 261

XmlDocument class, 261–269
fetchAllData method, 261
getContent method, 262
getContentAsDOM method, 263
getMetaData method, 264
getMetaDataIterator method, 264
getName method, 265
removeMetaData method, 265
setContent method, 266
setContentAsDOM method, 267
setContentAsXmlInputStream method,

267
setMetaData method, 267
setName method, 268

XmlDocumentConfig class, 269–270
setGenerateName method, 269
setLockMode method, 269
setReverseOrder method, 269

XmlException class, 270
getDbError method, 270
getExceptionCode method, 270
what method, 270

XmlIndexLookup class, 270–275
execute method, 270
getContainer method, 271
getHighBound method, 272
getIndex method, 272
getLowBound method, 273
getNode method, 274
getParent method, 275
setContainer method, 271
setHighBound method, 272
setIndex method, 272
setLowBound method, 273
setNode method, 274
setParent method, 275

XmlIndexSpecification class, 275–282
addDefaultIndex method, 277
addIndex method, 276
deleteDefaultIndex method, 278
deleteIndex method, 277
find method, 279
getDefaultIndex method, 279
next method, 280
replaceDefaultIndex method, 281
replaceIndex method, 280
reset method, 282

XmlInputStream class, 282–284
curPos method, 282
getContentAsXmlInputStream method,

XmlDocument, 263
readBytes method, 283

XmlManager class, 284–310
constructor, 284

createContainer method, 285
createDocument method, 287
createIndexLookup method, 288
createLocalFileInputStream method, 289
createMemBufInputStream method, 289
createModify method, 290
createQueryContext method, 291
createResults method, 292
createStdInInputStream method, 293
createTransaction method, 293
createUpdateContext method, 295
createURLInputStream method, 295
dumpContainer method, 296
existsContainer method, 297
getDbEnv method, 297
getDefaultContainerFlags method, 306
getDefaultContainerType method, 307
getDefaultPageSize method, 307
getHome method, 298
loadContainer method, 299
openContainer method, 300
prepare method, 302
query method, 302
reindexContainer method, 304
removeContainer method, 304
renameContainer method, 305
setDefaultContainerFlags method, 306
setDefaultContainerType method, 307
setDefaultPageSize method, 307
setLogCategory method, 308
setLogLevel method alias, 308
upgradeContainer method, 308
verifyContainer method, 309

XmlManagerConfig class, 310–311
setAdoptEnvironment method, 310
setAllowAutoOpen method, 311
setAllowExternalAccess method, 310

XmlMetaDataIterator class, 311–312
next method, 311
reset method, 312

XmlModify class, 312–317
addAppendStep method, 312
addInsertAfterStep method, 313
addInsertBeforeStep method, 314
addRemoveStep method, 314
addRenameStep method, 315
addUpdateStep method, 316
execute method, 316

XmlQueryContext class, 317–324
clearNamespaces method, 318
getBaseURI method, 320
getDefaultCollection method, 319
getEvaluationType method, 321
getNamespace method, 320
getReturnType method, 322
getVariableValue method, 323
removeNamespace method, 318
setBaseURI method, 320
setDefaultCollection method, 319

■INDEX358

6668index.qxd 7/21/06 10:59 AM Page 358

setEvaluationType method, 321
setNamespace method, 320
setReturnType method, 322
setVariableValue method, 323

XmlQueryExpression class, 324–327
execute method, 324
getQuery method, 326
getQueryPlan method, 326

XmlResults class, 327–332
add method, 327
hasNext method, 328
hasPrevious method, 328
next method, 329
peek method, 330
previous method, 330
reset method, 331
size method, 332

XmlStatistics class, 332–333
getNumberOfIndexedKeys method, 332
getNumberOfUniqueKeys method, 333

XmlTransaction class, 334–336
abort method, 334
commit method, 334
createChild method, 335
getDbTxn method, 336

XmlUpdateContext class, 336–337
getApplyChangesToContainers method,

337
setApplyChangesToContainers method,

337
XmlValue class, 337–342

asXyz methods, 337
getXyz methods, 337
isXyz methods, 337

API reference, BDB XML, 231–342
apos entity, XML, 205
apostrophe character, XQuery, 343
applications

compiling, C++ API, 103–104
running

Java API, 141–142
Perl API, 161
PHP API, 177
Python API, 125

apply-templates element, xsl namespace, 227
architecture

website architecture with BDB XML, 22
website architecture with database, 21

as keyword, XQuery, 345
ascending keyword, XQuery, 345
asDocument method, XmlValue class, 53

C++ API, 114, 115
Java API, 151
Perl API, 168, 169
PHP API, 183, 184
Python API, 132, 133

assignment operator, XQuery, 344
asString method, XmlValue class

C++ API, 114

Java API, 151
Perl API, 168
PHP API, 183
Python API, 132

asXyz methods, XmlValue class, 337
at keyword, XQuery, 80, 345
Atom

XML for data exchange, 15
atomic data types, XQuery, 84, 351
Attr class, DOM, 222
Attr node type, DOM, 212, 213
attribute axis, XPath, 218
attribute axis, XQuery, 84, 344
attribute constructor, XQuery, 345
attribute keyword, XQuery, 345
attribute node constructor, XQuery, 92
attribute node type, 64
attribute node wildcard, XPath, 215
attribute data type, XQuery, 352
attributes, XML, 203

correct syntax, 204
namespaces, 207
using elements or attributes, 214
well-formedness, 204
xmlns attribute prefix, 207

attributes, XPath
path operator (@), 215

avg function, XQuery, 348
axes, XPath, 217–219

abbreviations explained, 218
caution: using axes with predicates, 218
table of, 218

axes, XQuery
“After” navigation axis, 346

axis separator (::), XQuery, 344

B
b option

eval/xqilla XQuery utility, 74
backups

duration snapshots, 197
hot backups, 196
managing databases, 196–197
point in time snapshots, 197
standard backups, 196

base-uri function, XQuery, 85, 348
base64Binary data type, XQuery, 352
baseId parameter, createURLInputStream

method, 295
baseURI parameter, setBaseURI method, 320
BASE_64_BINARY data type, XmlValue, 338
basis, XPath, 218
BDB (Berkeley DB), 25
BDB XML

building language bindings, 31–33
Perl, 31–32
PHP, 32–33
Python, 32

C++ API major classes, 105

■INDEX 359

Find it faster at http://superindex.apress.com
/

6668index.qxd 7/21/06 10:59 AM Page 359

command completion, 37
configuration, 25
containers, 35
dbxml shell command line options, 36
documents, 53–57
download site, 25
embedded data storage, 23
environments, 35
features built upon Berkeley DB, 2
getting database command prompt, 36
indexes, 61–72
input history, 37
installing, 26
installing on Unix, 28–33
installing on Windows, 26–28

binary install, 26
source install, 27
Windows build file explanations, 27

library, 26
running scripts using Python API, 125

overview, 1–5
packages and layout, 25–26
Pathan, 26
query engine, 61
website architecture, 22
Xerces, 26
XQuery package, 26
XQuery with, 73–102

BDB XML API reference, 231–342
BDB XML C++ API

see C++ API, BDB XML
BDB XML databases

containers, 50
creating and opening, 50–51

operations, 52–53
types, 51–52

programming languages accessing, 35
BDB XML with Java

see Java API, BDB XML
BDB XML with Perl

see Perl API, BDB XML
BDB XML with PHP

see PHP API, BDB XML
BDB XML with Python API

see Python API, BDB XML
BDBXML_all files

Windows build file explanations, 27
“Before” node order test, XQuery, 344
Berkeley DB (BDB)

containers, 50–53, 58
database environment class

see DbEnv class
documents, 53–57, 58
embedded databases, 10
environments, 47–50, 58
installing BDB XML on Unix, 29
introduction, 1

Berkeley DB XML
see BDB XML

Berkeley_DB_XML files
Windows build file explanations, 27

bidirectional pointers
Wordnet data format, 13

BINARY data type, XmlValue, 338
binary install

installing BDB XML on Windows, 26
bindings

see language bindings, BDB XML
bitwise OR’d method parameters

Java API and C++ API differences, 141
BOOLEAN data type, XmlValue, 338
boolean data type, XQuery, 352
boolean function, XQuery, 348
bsddb/bsddb3 modules

running scripts using Python API, 125
build files

Windows build file explanations, 27
build-one option, buildall.sh, 28
buildall.sh script

Berkeley DB, 29
building language bindings, 31
FreeBSD, 31
installing BDB XML on Unix, 28

changing BDB XML libraries/binaries
location, 28

command-line options for, 28
running with no options, 28

Linux, 30
Mac OS X, 30
Pathan, 30
Xerces, 29
XQuery, 30

byte data type, XQuery, 352
bytes

readBytes method, XmlInputStream, 283

C
c option

dbxml shell command line options, 36
creating environments, 48

dbxml_load_container utility, 192
db_recover utility, 195
db_stat utility, 196

C++ API classes
see also API method and class reference
DbEnv class, 105
DbXml class, 105
DbXml namespace, 104
XmlContainer class, 105, 116–119
XmlDocument class, 105, 119
XmlException class, 105
XmlIndexSpecification class, 105
XmlManager class, 105, 108–115
XmlModify class, 105, 120–121
XmlQueryContext class, 105
XmlQueryExpression class, 105
XmlResults class, 105
XmlTransaction class, 105, 121–123

■INDEX360

6668index.qxd 7/21/06 10:59 AM Page 360

XmlUpdateContext class, 105
XmlValue class, 105

C++ API, BDB XML, 103–124
adding document to container from local file,

111
class organization, 104–105
compiling applications, 103–104
copying objects, 231
database environments, 107

opening database environments, 107
documentation on, 124
errors and exception handling, 105–106
event API, 123
flags, 231
general notes, 231
including headers, 231
table of major classes, 105
thread safety, 231
transactions, 121–123

cardinality indicator, XQuery, 344
case keyword, XQuery, 345
cast keyword, XQuery, 84, 345
castable as keyword, XQuery, 83, 345
casting, XQuery, 83
category parameter

setLogCategory method, DbXml, 235
CATEGORY_XYZ log categories

setLogCategory method, DbXml, 235
CDATA section, 205

constructor, XQuery, 344
CDATASection node type, DOM, 212

corresponding XPath, 213
parsed DOM node tree, 214

ceiling function, XPath, 220
ceiling function, XQuery, 348
CharacterData class, DOM, 222
checkpointing transactions, 195
checkpoints

db_archive utility listing, 194
checksum verification

DBXML_CHKSUM flag, 286, 301
child axis, XPath, 218
child axis, XQuery, 84
child elements, XML, 206
child keyword, XQuery, 345
child transaction

createChild method, XmlTransaction, 335
classes

see also API method and class reference
class organization, C++ API, 104–105

see also C++ API classes
class organization, Java API, 142

see also Java API classes
class organization, Perl API, 161–162

see also Perl API classes
class organization, PHP API, 177–178

see also PHP API classes
class organization, Python API, 125–126

see also Python API classes

CLASSPATH environment variable
running applications, Java API, 141

clean option
command-line options for buildall.sh, 28

clearNamespaces method, XmlQueryContext,
318

client-server database design, 8
close method

Db4Env class, PHP API, 178
DbEnv class, 234–235

C++ API, 107
Perl API, 163
Python API, 127

closeContainer command, 51
codepoints-to-string function, XQuery, 348
collection function

XPath, 76
XQuery, 74, 76, 77, 85, 348

collection method, XmlQueryContext, 112
collection query

getDefaultCollection method, 319
performing queries on containers, 53
retrieving documents, 54
setDefaultCollection method, 319

colon character, XQuery, 344
comma character, XQuery, 344
comma-delimited list, 199
comma separated values (CSV), 199
command completion, BDB XML, 37
command line arguments

running applications, Java API, 141
command line options

dbxml shell, 36
command line utilities, BDB XML

manuals for, 197
commands

abort, 44
addIndex, 40, 65
commit, 44
contextQuery, 76
createContainer, 36
dbxml_load_container, 38
delIndex, 67
getMetaData, 44
getting database command prompt, 36
help, 36
listIndex, 67
listIndexes, 40
putDocument, 37
query, 38
queryPlan, 41, 71
removeDocument, 38
setMetaData, 43
shortcuts for commands, 38
transaction, 44

comment keyword, XQuery, 345
Comment node type, DOM, 212

corresponding XPath, 213
parsed DOM node tree, 213

■INDEX 361

Find it faster at http://superindex.apress.com
/

6668index.qxd 7/21/06 10:59 AM Page 361

comment data type, XQuery, 352
comment function, XPath, 219
comments, XML, 205
comments, XQuery, 343
commit command, 44

shortcuts for commands, 38
commit method, XmlTransaction, 334–335

C++ API, 122
community

developer community, 20
compare function, XQuery, 348
comparisons, XQuery, 85–86

is operator, 85
operators, 85
string comparisons, 85
XQuery expressions, 77

compiling applications, C++ API, 103–104
concat function, XPath, 220
concat function, XQuery, 348
conditional expressions, XQuery, 346

quantification condition test, 346
where clause, 81

configuration
BDB XML, 25
environments, 48–50
Java and C++ class differences, 141
XmlManagerConfig class, 310–311

container name
dbxml_load_container specifying, 192

containers, 50–53
addAlias method, 53
adding an index, 40
adding documents to containers, 52
adding multiple documents, 38
BDB XML operations, 52–53
BDB XML types, 51–52
C++ API see containers, C++ API
caution when opening transactionally, 138
createContainer method, 285–287
creating and opening, 50–51
creating in current directory, 36–37
creating node-type container, 191
dbxml_load_container command, 38
default container, 53
default indexes, 37, 68
deleting files, 38
description, 35, 58
dumpContainer method, 296–297
dumping containers, 192–193
environments, 35
existsContainer method, 297
getApplyChangesToContainers method, 337
getContainer method, 271
getContainerType method, 246
getDefaultContainerFlags method, 306
getDefaultContainerType method, 307
indexing containers, 40–41
Java API see containers, Java API
listing documents in containers, 52

loadContainer method, 299
loading containers, 193
managing container indexes, 117
managing databases, 191–197
managing logs, 193–194
Node containers, 51, 52
openContainer method, 300–301
overview of BDB XML, 2
parsing query strings, 41
performing queries and listing results, 53
Perl API see containers Perl API
PHP API see containers PHP API
populating containers, 191–192
Python API see containers Python API
querying containers, 38–40
reindexContainer method, 304
removeContainer method, 304–305
renameContainer method, 305–306
setApplyChangesToContainers method, 337
setContainer method, 271
setDefaultContainerFlags method, 306
setDefaultContainerType method, 307
setNodeContainer method, 260
transactions, 44–45
upgradeContainer method, 308–309
verifyContainer method, 309–310
Wholedoc containers, 51
XmlContainer class, 238–260

containers, C++ API
adding document from local file, 111
adding indexes to containers, 117
creating, 109
deleting, 110
listing documents referenced by index, 118
loading documents with XmlManager,

110–111
managing with XmlManager, 108–110
manipulating index specification, 118
opening, 109
opening for transactional processing, 121,

122
preparing and executing queries on, 112–114
removing, 110
renaming, 110
XmlContainer class, 105, 116–119
XmlManager class, 108–115

containers, Java API
adding document from local file, 147
adding indexes to containers, 155
closing, 232
createContainer method, 145
creating, Java API, 145, 146
deleting, 146
listing documents referenced by index, 156
loading documents into containers, 147–148
managing with XmlManager, 145
manipulating index specification, 155
NodeContainer, 156

setNodeContainer method, 260

■INDEX362

6668index.qxd 7/21/06 10:59 AM Page 362

openContainer method, 145, 146
opening, 145, 146
preparing and executing queries on, 148–151
removeContainer method, 146
renameContainer method, 146
renaming, 146
stale locks, 145
WholedocContainer, 156
XmlContainer class, 142, 153–156
XmlContainerConfig class, 145, 146, 260–261

containers, Perl API
adding document from local file, 165
adding indexes to containers, 171
closing, 232
closing, 164
createContainer method, 164
creating, 163, 164
deleting, 164
listing documents referenced by index, 172
loading documents into containers, 165
managing with XmlManager, 163
manipulating index specification, 171
NodeContainer, 172
openContainer method, 164
opening, 164
preparing and executing queries on, 166–167
removeContainer method, 164
renameContainer method, 164
renaming, 164
WholedocContainer, 172
XmlContainer class, 162, 169–172

containers, PHP API
adding document from local file, 181
adding indexes to containers, 186
closing, 179
createContainer method, 179, 180
creating, 179
deleting, 180
listing documents referenced by index, 187
loading documents into containers, 180–181
managing with XmlManager, 179
manipulating container’s index specification,

186
NodeContainer, 187
openContainer method, 179, 180
opening, 179
preparing and executing queries on, 181–183
removeContainer method, 180
renameContainer method, 180
renaming, 180
WholedocContainer, 187
XmlContainer class, 177, 185–187

containers, Python API
adding document from local file, 129
adding indexes to containers, 135
closing, 232
creating, 127, 128
deleting, 128
listing documents referenced by index, 136
loading documents into containers, 128–129

managing, 127
manipulating index specification, 135
opening, 127
preparing and executing queries on, 129–131
removing, 128
renaming, 128
XmlContainer class, 126, 133–136

contains function, XPath, 219, 220
index strategies, 69
XSLT, 229

contains function, XQuery, 348
arguments, 87
indexing, 88

content parameter, deleteIndex method, 243
contents parameter, putDocument method,

254
context node set, 220
context parameter

addDefaultIndex method, 241
addIndex method, 240
deleteDefaultIndex method, 244
deleteDocument method, 242
execute method, 317
loadContainer method, 299
putDocument method, 254
query method, 303
replaceDefaultIndex method, 257
replaceIndex method, 256
setIndexSpecification method, 258
updateDocument method, 259
upgradeContainer method, 309

contextItem parameter, execute method, 324
contextQuery command, XQuery/XPath, 76
contexts

createQueryContext method, 291–292
createUpdateContext method, 295
XmlUpdateContext class, 336–337
XPath expressions, 214

coordinates element, 97
count function, XPath, 219
count function, XQuery, 348
create command

shortcuts for commands, 38
createChild method, XmlTransaction, 335
createContainer command, 36

creating and opening containers, 51
creating containers, 50
overview of BDB XML, 2, 3

createContainer method, XmlManager, 285–287
C++ API, 109, 116
Java API, 145, 153
Perl API, 164, 169
PHP API, 179, 180, 185
Python API, 127, 128, 133

createDocument method, XmlManager, 287
C++ API, 111, 115
Java API, 148
Perl API, 165
PHP API, 181
Python API, 129

■INDEX 363

Find it faster at http://superindex.apress.com
/

6668index.qxd 7/21/06 10:59 AM Page 363

createIndexLookup method, XmlManager,
288–289

C++ API, 115, 118
Java API, 153, 156
Perl API, 169, 172
PHP API, 184, 186
Python API, 133, 135

createInputStream method, XmlManager, 147
createLocalFileInputStream method,

XmlManager, 289
C++ API, 110
Java API, 147
Perl API, 165
PHP API, 180, 181
Python API, 129

createMemBufInputStream method,
XmlManager, 289

C++ API, 110
Java API, 147
Perl API, 165
PHP API, 180
Python API, 129

createModify method, XmlManager, 290
C++ API, 120
Java API, 158
Perl API, 173
PHP API, 188
Python API, 137

createQueryContext method, XmlManager,
291–292

createResults method, XmlManager, 292
createStdInInputStream method, XmlManager,

293
C++ API, 110

createTransaction method, XmlManager,
293–294

C++ API, 115, 122
Java API, 153
Perl API, 169
PHP API, 184
Python API, 133, 139

createUpdateContext method, XmlManager, 295
createURLInputStream method, XmlManager,

295
C++ API, 110
Java API, 147
Perl API, 165
PHP API, 180
Python API, 129

createXyz methods, XmlManager class
C++ API, 115
Java API, 153
Perl API, 169
PHP API, 184
Python API, 133

credit card numbers
validation, 208

CSV (comma separated values), 199
formatting data, 200
XML version of, 200

curPos method, XmlInputStream, 282
current context item, XQuery, 344
current-date function, XQuery, 85, 348
current-dateTime function, XQuery, 348
current function, XPath

XSLT, 229
current node, XPath

path operator (.), 215
XSLT, 228

current-time function, XQuery, 348

D
D key

query plans, XQuery, 100
d option

db_archive utility, 194
db_stat utility, 196
eval/xqilla XQuery utility, 74

data
delimiting data, 199
escaping data, 200
XML and data, 199–203

data exchange
XML for, 14–15

data format, Wordnet, 12
data function, XQuery, 348
data sources

criteria for XML databases, 20
querying multiple data sources, 90

data storage
using BDB XML for embedded data storage,

23
XML for, 16–17

data streams
setContentAsXmlInputStream method, 54

data types, XQuery, 82–84, 351–353
abbreviated XQuery data type tree, 83
anyAtomicType, xdt, 84
atomic values, 84
cast keyword, 84
castable as keyword, 83
casting, 83
items, 82
nodes, 84
type hierarchy, 82
untypedAtomic type, xdt, 84

database environment class
see DbEnv class

database environments
C++ API, 107
getDbEnv method, 297
Java API, 144
Perl API, 163
PHP API, 178
Python API, 126–127

database servers
accessing relational databases, 7
calling over a network, 9
client-server database design, 8
multiuser server, 9

■INDEX364

6668index.qxd 7/21/06 10:59 AM Page 364

reasons for using BDB XML, 7
server-client architecture for networked

game, 9
databases

see also BDB XML databases
backing up, 196–197
Berkeley DB (BDB), 25
embedded database design, 8
managing databases, 191–197

backup and restore, 196–197
checkpointing transactions, 195
debugging databases, 196
detecting deadlocks, 194–195
dumping containers, 192–193
loading containers, 193
managing logs, 193–194
populating containers, 191–192
recovery, 195
Sleepycat documentation, 191
utilities location, 191

reasons for using, 16
restoring, 196–197

DATE data type, XmlValue, 338
date data type, XQuery, 352
dateTime data type, XQuery, 352
DATE_TIME data type, XmlValue, 338
day-from-date function, XQuery, 348
day-from-dateTime function, XQuery, 348
day-from-duration function, XQuery, 348
dayTimeDuration data type, XQuery, 352
DAY_TIME_DURATION data type, XmlValue,

338
db.jar class library

running applications, Java API, 141
Db4Env class, PHP API

BDB XML using, 178
close method, 178
constructor, 233
description, 178
instantiating XmlManager objects, 179
open method, 178

DbEnv class, 232–235
BDB XML using, 163
close method, 234–235
constructor, 233
creating environments, 48
DBXML_ADOPT_DBENV flag, 284
configuring and manipulating environments,

49
open method, 233–234

DbEnv class, C++ API, 105
close method, 107
database environments, 107
error streams, 106
open method, 107
setLogCategory method, 106
setLogLevel method, 106

DbEnv class, Perl API, 162
close method, 163
configuring database environment, 163

instantiating XmlManager objects, 163
open method, 163

DBEnv class, Python API, 126
dbenv parameter, XmlManager constructor,

284
dbremove method, DBEnv, 49
DbTxn class

getDbTxn method, 336
DbTxn parameter

createTransaction method, 293
DbXml class, 235–238

C++ API, 105
CATEGORY_XYZ log categories, 235
dbxml_version method, 237–238
get_version_xyz methods, 237
LEVEL_XYZ parameters, 236
Perl API, 162
setLogCategory method, 235–236
setLogLevel method, 236–237

DbXml method, Perl API
XmlValue parameter, 161

dbxml module
running scripts using Python API, 125

DbXml namespace
C++ classes, 104

dbxml shell
adding command completion, 37
adding input history, 37
command line options, 36
creating and opening containers, 50–51
creating containers in current directory,

36–37
creating Node containers, 52
creating Wholedoc containers, 52
indexing containers, 40–41
metadata, 43–44
placing XML document into shell as text,

37–38
querying containers, 38–40
shortcuts for commands, 38
transactions, 44–45
using XQuery, 41–43

dbxml.jar class library
running applications, Java API, 141

DBXML_ADOPT_DBENV flag
XmlManager class constructor, 284

PHP API, 179
DBXML_ALLOW_AUTO_OPEN flag

XmlManager class constructor, 284
DBXML_ALLOW_EXTERNAL_ACCESS flag

XmlManager class constructor, 284
DBXML_ALLOW_VALIDATION flag

createContainer method, 286
openContainer method, 301
validating documents, 56

DBXML_ALLOW_XYZ flags
XmlManager class constructor, 49

DBXML_CHKSUM flag
createContainer method, 286
openContainer method, 301

■INDEX 365

Find it faster at http://superindex.apress.com
/

6668index.qxd 7/21/06 10:59 AM Page 365

DBXML_DIRTY_READ flag
getDocument method, 247

dbxml_dump utility
dumping container contents, 192–193
options, 193

DBXML_ENCRYPT flag
createContainer method, 286

DBXML_GEN_NAME flag
putDocument method, 254
putting document into container, 268
using XmlContainer

C++ API, 116
Perl API, 170
PHP API, 185
Python API, 134

dbxml_gettingStarted files
Windows build file explanations, 27

DBXML_INDEX_NODES flag
createContainer method, 286
creating containers, 52
managing container indexes

C++ API, 118
Java API, 156
Perl API, 172
PHP API, 187
Python API, 136

openContainer method, 301
DBXML_LAZY_DOCS flag

execute method, 325
getAllDocuments method, 245
getDocument method, 247
query method, 303
retrieving document content and metadata,

261
dbxml_load utility

loading containers, 193
options, 193

dbxml_load_container command, 38
dbxml_load_container utility

caution: using off-line, 191
options, 192
populating containers, 191–192

DBXML_REVERSE_ORDER flag
getAllDocuments method, 245

DBXML_TRANSACTIONAL flag
createContainer method, 286
creating and opening containers, 51
openContainer method, 301
using XmlTransaction, C++ API, 121
using XmlTransaction, Python API, 138

dbxml_version method, DbXml, 237–238
DB_AGGRESSIVE flag

verifyContainer method, 310
db_archive utility

backing up databases, 197
h option, 50
managing logs, 193–194
options, 194

DB_CDB_ALLDB flag, 49

db_checkpoint utility
backing up databases, 197
checkpointing transactions, 195
options, 195

DB_CONFIG configuration file, 49
DB_CREATE flag

createContainer method, 286
open method, DbEnv, 233
openContainer method, 300
opening containers

C++ API, 109
Perl API, 164
PHP API, 180
Python API, 128

db_deadlock utility
detecting deadlocks, 194–195
options, 194

DB_DEGREE_2 flag
createTransaction method, 294
execute method, 325
getAllDocuments method, 245
getDocument method, 247
query method, 303

DB_DIRTY_READ flag
createContainer method, 286
createTransaction method, 294
execute method, 325
getAllDocuments method, 245
query method, 303

DB_DSYNC_LOG flag, 49
db_dump utility

caution using, 192
dumping container contents, 192

DB_EXCL flag
createContainer method, 286
openContainer method, 300
opening containers

C++ API, 109
Perl API, 164
PHP API, 180
Python API, 128

db_hotbackup utility, 197
DB_INIT_LOCK flag

open method, DbEnv, 233
DB_INIT_LOG flag

open method, DbEnv, 234
DB_INIT_MPOOL flag

open method, DbEnv, 234
DB_INIT_TXN flag

open method, DbEnv, 234
db_load utility, 192
DB_LOG_AUTOREMOVE flag, 49
DB_NOMMAP flag

createContainer method, 286
db_printlog program

managing logs, 193
DB_RDONLY flag

createContainer method, 286
creating and opening containers, 51
openContainer method, 300

■INDEX366

6668index.qxd 7/21/06 10:59 AM Page 366

DB_READ_COMMITTED flag
createTransaction method, 294
execute method, 325
getAllDocuments method, 245
getDocument method, 247
query method, 303

DB_READ_UNCOMMITTED flag
createContainer method, 286
createTransaction method, 294
execute method, 325
getAllDocuments method, 245
getDocument method, 247
query method, 303

DB_RECOVER flag
open method, DbEnv, 234

db_recover utility, 195
DB_RMW flag

execute method, 325
getAllDocuments method, 245
getDocument method, 247
getIndexSpecification method, 249
query method, 303

DB_SALVAGE flag
verifyContainer method, 310

db_stat utility, 196
DB_THREAD flag

createContainer method, 286
openContainer method, 300

DB_TXN_NOSYNC flag
commit method, 335
createTransaction method, 294

DB_TXN_NOT_DURABLE flag
createContainer method, 286

DB_TXN_NOWAIT flag
createTransaction method, 294

DB_TXN_SYNC flag
commit method, 335
createTransaction method, 294

db_verify command
debugging databases, 196

DB_XA_CREATE flag
createContainer method, 286

DB_XYZ environment open flags, 48
deadlocks

Berkeley DB reference guide, 197
detecting deadlocks, 194–195
occurrence caused by, 194
specifying action taken when detected, 194

DeadValues return type, XmlQueryContext
createQueryContext method, 291
setReturnType method, 322

debugging
debugging databases, 196
error streams, 143

decimal character reference, XQuery, 343
DECIMAL data type, XmlValue, 338
decimal data type, XQuery, 352
declarative languages, 226
declare base-uri keyword, XQuery, 345

declare default element namespace keyword,
XQuery, 345

declare default function namespace keyword,
XQuery, 345

declare function keyword, XQuery, 345
declare namespace keyword, XQuery, 345
declare validation keyword, XQuery, 345
declare variable keyword, XQuery, 345
declare xmlspace keyword, XQuery, 345
deep-equal function, XQuery, 86, 348
default-collation function, XQuery, 348
default container, XQuery, 53
DEFAULT flag

setLockMode method, 269
default indexes, 68
DEGREE_2 flag

setLockMode method, 269
delete method, XmlManager

Java API, 145, 232
deleteDefaultIndex method

XmlContainer class, 68, 244–245
XmlIndexSpecification class, 278

deleteDocument method, XmlContainer, 56,
241–242

C++ API, 116
Java API, 153
Perl API, 170
PHP API, 185
Python API, 134

deleteIndex method, XmlContainer, 67, 243–244
C++ API, 118
Java API, 155
Perl API, 171
PHP API, 186
Python API, 135

deleteIndex method, XmlIndexSpecification,
277

delimited data
parsing, 199

delIndex command, 67, 68
descendant axis, XPath, 218
descendant elements, XML, 206
descendant keyword, XQuery, 345
descendant-or-self axis, XPath, 218
descendant-or-self keyword, XQuery, 345
descending keyword, XQuery, 345
desktop applications

embedded databases, 14, 23
developer community

criteria for XML databases, 20
difference set operator, XQuery, 346
dirty reads

DB_DIRTY_READ flag, 245, 247, 286, 294, 303
DIRTY_READ flag

setLockMode method, 269
distclean option

command-line options for buildall.sh, 28
distinct-values function, XQuery, 99, 348
div operator, XQuery, 345

■INDEX 367

Find it faster at http://superindex.apress.com
/

6668index.qxd 7/21/06 10:59 AM Page 367

DLLs
compiling programs, C++ API, 103

doc function, XPath, 75, 76
doc function, XQuery, 75, 76, 85, 348
doc query

retrieving documents, 55
Document class, DOM, 222
document function, XPath, 225
document keyword, XQuery, 345
document name lookup key

query plans, XQuery, 100
document-node data type, XQuery, 352
Document node type, DOM, 212

corresponding XPath, 213
Document Object Model

see DOM
document parameter

deleteDocument method, 242
next method, XmlResults, 329
putDocument method, 253
updateDocument method, 259
XmlValue, 338

document-uri function, XQuery, 348
documents, 53–57

see also XML documents
adding documents, 54
adding documents to containers, 52
adding document to container from local file

C++ API, 111
Java API, 147
Perl API, 165
PHP API, 181
Python API, 129

adding metadata to documents
C++ API, 119
Java API, 156
Perl API, 172
PHP API, 187
Python API, 136

avoiding retrieval in nonread operations, 157
createDocument method, XmlManager, 287

C++ API, 111, 115
Java API, 148
Perl API, 165
PHP API, 181
Python API, 129

database as authoritative location for, 54
DBXML_LAZY_DOCS flag, 245, 247
deleteDocument method, XmlContainer,

241–242
deleting documents, 56

C++ API, 116
Java API, 154
Perl API, 170
PHP API, 185
Python API, 134

description, 53, 58
DOM interface, 53
getAllDocuments method, XmlContainer,

245–246

getContent method, XmlDocument, 262
getContentAsDOM method, 263
getDocument method, XmlContainer,

246–248
C++ API, 116
Java API, 148
Perl API, 165
PHP API, 181
Python API, 129

getNumDocuments method, XmlContainer,
250

inserting document transactionally, Python
API, 139

letting BDB XML generate document names
C++ API, 116
Java API, 153
Perl API, 170
PHP API, 185
Python API, 133

listing documents in containers, 52
listing documents referenced by index

C++ API, 118
Java API, 156
Perl API, 172
PHP API, 187
Python API, 136

loading into containers
C++ API, 110–111, 116, 117
Java API, 147–148
Perl API, 165
PHP API, 180–181
Python API, 128–129

metadata, 57
adding metadata, 57

modifying
C++ API, 120
Java API, 158
Perl API, 174
PHP API, 188
Python API, 137

modifying all documents in result set
C++ API, 121
Java API, 158
Perl API, 174
PHP API, 189
Python API, 138

modifying programmatically, 55
violating associated DTD/schema without

error, 56
putDocument method, XmlContainer class,

253–255
C++ API, 110, 111, 116
Java API, 147
Perl API, 165
PHP API, 180
Python API, 129, 133

reading metadata from documents
C++ API, 120
Java API, 157
Perl API, 173

■INDEX368

6668index.qxd 7/21/06 10:59 AM Page 368

PHP API, 188
Python API, 137

replacing documents, 55
adding node to replaced document, 55
C++ API, 117
Java API, 154
Perl API, 171
PHP API, 186
Python API, 134

retrieving documents, 54
transactions, 56

deleting documents within transactions,
56

updateDocument method, XmlContainer,
259–260

validation, 56
Xerces DOM, 53
XmlDocument class, 53, 261–269

C++ API, 105, 119
Java API, 142
Perl API, 162
PHP API, 178
Python API, 126

XmlDocumentConfig class, Java API, 269–270
XmlModify class, C++ API, 105, 120–121

DOM (Document Object Model)
compatibility, 222
getContentAsDOM method, 263
implementation considerations, 222
node types, 212
parsed DOM node tree and XPath for node,

213
reading and writing XML, 223–226

Perl XML::LibXML module, 224–226
Xerces C++, 223–224

setContentAsDOM method, 267
using elements or attributes, 214
versions of DOM specification, 222
XML DOM, 212–214, 221–226

DOM classes
with attribute and method examples, 222

DOM Inspector window, Firefox, 221
DOM interface

description, 222
documents, BDB XML, 53
setContentAsDOM method, 54
writing XML using, 222

DOUBLE data type, XmlValue, 338
double data type, XQuery, 352
dsp file extension

Windows build file explanations, 27
DTD (Document Type Definition)

validation processes, 208
dumpContainer method, XmlManager,

296–297
dumping containers, 192–193
DURATION data type, XmlValue, 338
duration data type, XQuery, 352
duration snapshots, 197

E
E key

query plans, XQuery, 100
e option

db_stat utility, 196
Eager evaluation type, XmlQueryContext

C++ API, 113
createQueryContext method, 291
Java API, 150
Perl API, 167
PHP API, 182
Python API, 131
setEvaluationType method, 321

edge indexes
presence tests, 100

edge path type, 63, 64
Element class, DOM, 222
element data type, XQuery, 352
element keyword, XQuery, 346
element node constructor

reshaping XQuery results, 92
element node type, 64

adding indexes, 66
Element node type, DOM, 212

corresponding XPath, 213
parsed DOM node tree, 213

element node wildcard, XPath
path operator (*), 215

elements, XML, 203
crossing elements, 204
default XML entities, 205
description, 201
element relationships, 206
empty elements, 202
forcing XML parser to ignore content, 205
namespaces, 207
parsing, 205
root element, 203
using elements or attributes, 214
well-formedness, 204
white space preservation, 204
XML schemas, 209

elements, XQuery
declare default element namespace keyword,

345
query plans, 100

embedded databases
advantages of embedding over daemons, 8
BDB, 10
criteria for high-performance XML

databases, 20–21
desktop applications, 14
embedded database design, 8
indexing XML, 18–20
multiuser server, 10
prestructured XML data, 17
reasons for using BDB XML, 7
SQLite, 11
using BDB XML for embedded data storage, 23

■INDEX 369

Find it faster at http://superindex.apress.com
/

6668index.qxd 7/21/06 10:59 AM Page 369

website architecture with database, 21
what “embedded” means, 7
Wordnet, 11–14

embedded XML database
core concepts, 35
reasons for using, 7
various programming languages accessing, 35

empty elements, XML, 202
empty function, XQuery, 349
empty greatest keyword, XQuery, 346
empty least keyword, XQuery, 346
empty set key

query plans, XQuery, 100
enable-xyz options

command-line options for buildall.sh, 28
enabled parameter

setLogCategory method, 236
setLogLevel method, 237

encryption
DBXML_ENCRYPT flag, 286

ends-with function, XQuery, 349
entities, XML, 204, 205
Environment class, Java API

constructor, 144
description, 142
exceptions, 143

environment directory
dbxml_dump utility specifying, 193
dbxml_load utility specifying, 193
dbxml_load_container specifying, 192
db_archive utility specifying, 194
db_checkpoint utility specifying, 195
db_deadlock utility specifying, 194
db_recover specifying, 195
db_stat utility specifying, 196

environment flags
see flags

Environment objects
instantiating XmlManager objects, 145

EnvironmentConfig class, Java API
description, 143
environments, Java API, 144

environments, 47–50
C++ API, 107

opening for transactional processing, 121,
122

configuration, 48–50
containers, 35
creating and opening, 48–49
Db4Env class, PHP API, 178
DbEnv class, 232–235

C++ API, 105
Perl API, 162
Python API, 126

DB_XYZ environment open flags, 48
description, 35, 47, 58
getDbEnv method, 297
Java API, 144

setAdoptEnvironment method, 310
managing logs, 193–194

methods for configuring and manipulating, 49
Perl API, 163
PHP API, 178
Python API, 126–127

eq keyword, XQuery, 346
equality comparison operator, XQuery, 344, 346
equality key type, 64

adding indexes, 66
index strategies, 69

error function, XQuery, 349
error streams

C++ API, 106
DbEnv class, 106
debugging, 143
Java API, 143

errors
BDB XML validation on input streams, 147,

165, 180
C++ API, 105–106
getDbError method, 270
Java API, 142–144
Perl API, 162–163
Python API, 126
retrieving error codes/numbers, 106

escape-uri function, XQuery, 349
escaping data, 200
et parameter

createQueryContext method, 291
eval block, Perl API, 162
eval command-line tool, XQuery, 73, 74
evaluation types

createQueryContext method, 291
getEvaluationType method, 321
setEvaluationType method, 321

event API, C++ API, 123
getContentAsEventReader method, 123

every keyword, XQuery, 346
iteration vs. filtering, 88

exactly-one function, XQuery, 349
except operator, XQuery, 99, 346
exception handling

C++ API, 105–106
Java API, 142–144
Perl API, 232
PHP API, 232
Python API, 126, 232

exceptions
getExceptionCode method, 270
XmlException class, 270

C++ API, 105
Java API, 142
Perl API, 162, 163

execute method
replacing documents, 56

execute method, XmlIndexLookup, 270
C++ API, 118
Java API, 156
Perl API, 172
PHP API, 187
Python API, 136

■INDEX370

6668index.qxd 7/21/06 10:59 AM Page 370

execute method, XmlModify, 316–317
C++ API, 121
Java API, 158
Perl API, 174
PHP API, 189
Python API, 138

execute method, XmlQueryExpression, 324–326
C++ API, 112, 113, 114
Java API, 148, 149, 151
Perl API, 166, 167, 168
PHP API, 181, 182, 183
Python API, 129, 131, 133

exists function, XQuery, 349
existsContainer method, XmlManager, 51, 297
expressions, XmlQueryExpression, 324, 327

C++ API, 105
Java API, 142
Perl API, 162
PHP API, 178
Python API, 126

expressions, XQuery, 76–77, 343–347
clauses, 80–82
regular expressions, 88
XQuery navigation, 85

extensions
XML documents, 201

external references
indexes, 61

F
f option

dbxml_dump utility, 193
dbxml_load utility, 193
dbxml_load_container utility, 192

f parameter
putDocument shell command, 37

false function, XQuery, 349
fetchAllData method, XmlDocument, 261
file directories

environments, 35
files

metadata, 43–44
filtering

getting results with XQuery, 87–88
find method, XmlIndexSpecification, 279
Firefox DOM Inspector window, 221
flags

C++ API, 231
getDefaultContainerFlags method, 306
Java API, 232
Perl API, 232
PHP API, 232
Python API, 232
setDefaultContainerFlags method, 306

flags parameter
commit method, 335
createContainer method, 286
createTransaction method, 294
execute method, 324

getAllDocuments method, 245
getDocument method, 247
getIndexSpecification method, 248
openContainer method, 300
putDocument method, 254
query method, 303
verifyContainer method, 310
XmlManager constructor, 284

FLOAT data type, XmlValue, 338
float data type, XQuery, 352
floor function, XQuery, 349
FLWOR expressions, 42

XQuery, 80–82
fn namespace, XQuery, 347
following axis, XPath, 218
following keyword, XQuery, 346
following-sibling axis, XPath, 218
following-sibling keyword, XQuery, 346
for clause, XPath, 76
for clause, XQuery, 76, 80, 346

at keyword, 80
example, 80

FreeBSD
installing BDB XML on, 31

functions, XPath, 219–220
context node set, 220
custom XPath functions, 220

functions, XQuery, 347–351
declare default function namespace, 345
declare function keyword, 345
user-defined functions, 86

G
garbage collection

Java API, 145, 232
gDay data type, XQuery, 352
ge keyword, XQuery, 346
getAllDocuments method, XmlContainer, 52,

245–246
getApplyChangesToContainers method,

XmlUpdateContext, 337
getAttributes method, XmlValue

C++ API, 114
Java API, 151
Perl API, 168
PHP API, 183
Python API, 132

getBaseURI method, XmlQueryContext, 320
getContainer method, XmlIndexLookup, 271
getContainerType method, XmlContainer, 246
getContent method, XmlDocument, 262

C++ API, 117
Java API, 154
Python API, 134

getContentAsDOM method, XmlDocument, 263
C++ API, 117

getContentAsEventReader method,
XmlDocument

C++ API, 123

■INDEX 371

Find it faster at http://superindex.apress.com
/

6668index.qxd 7/21/06 10:59 AM Page 371

getContentAsXmlInputStream method,
XmlDocument, 263

getDbEnv method, XmlManager, 297
getDbError method, XmlException, 270
getDbTxn method, XmlTransaction, 336
getDefaultCollection method,

XmlQueryContext, 319
getDefaultContainerFlags method,

XmlManager, 306
getDefaultContainerType method,

XmlManager, 307
getDefaultIndex method,

XmlIndexSpecification, 279
getDefaultPageSize method, XmlManager, 307
getDocument method, XmlContainer, 246–248

avoiding retrieval in nonread operations, 157
loading documents into containers

C++ API, 116, 117
Java API, 148
Perl API, 165, 170
PHP API, 181, 185
Python API, 129

getEvaluationType method, XmlQueryContext,
321

getExceptionCode method, XmlException, 270
getFirstChild method, XmlValue

C++ API, 114
Java API, 151
Perl API, 168
PHP API, 183
Python API, 132

getHighBound method, XmlIndexLookup, 272
getHome method, XmlManager, 298
getIndex method, XmlIndexLookup, 272
getIndexNodes method, XmlContainer, 248
getIndexSpecification method, XmlContainer,

68, 248–249, 258
C++ API, 117
Java API, 155
Perl API, 171
PHP API, 186
Python API, 135

getLowBound method, XmlIndexLookup, 273
getManager method, XmlContainer, 249
getMetaData method, XmlDocument, 44, 264

C++ API, 119
Java API, 157
Perl API, 173
PHP API, 188
Python API, 136, 137

getMetaDataIterator method, XmlDocument,
264

getName method, XmlContainer, 250
getName method, XmlDocument class, 265

C++ API, 114
Java API, 151
Perl API, 168
PHP API, 183
Python API, 132

getNamespace method, XmlQueryContext, 320

getNextSibling method, XmlValue
C++ API, 114
Java API, 151
Perl API, 168
PHP API, 183
Python API, 132

getNode method, XmlIndexLookup, 274
getNumberOfIndexedKeys method,

XmlStatistics, 332
getNumberOfUniqueKeys method,

XmlStatistics, 333
getNumDocuments method, XmlContainer, 250
getPageSize method, XmlContainer, 251
getParent method, XmlIndexLookup, 275
getQuery method, XmlQueryExpression, 326
getQueryPlan method, XmlQueryExpression,

326
getReturnType method, XmlQueryContext, 322
getVariableValue method, XmlQueryContext,

323
getXyz methods, XmlValue, 337
get_version_xyz methods, DbXml, 237
gMonth data type, XQuery, 352
gMonthDay data type, XQuery, 352
granularity

Berkeley DB reference guide, 197
greater-than comparison operator, XQuery, 344,

346
greater-than-or-equal-to comparison operator,

XQuery, 344, 346
gt entity, XML, 205
gt keyword, XQuery, 346
guess function

utilizing hierarchy, XQuery, 95
gYear data type, XQuery, 352
gYearMonth data type, XQuery, 352
G_DAY data type, XmlValue, 338
G_MONTH data type, XmlValue, 338
G_MONTH_DAY data type, XmlValue, 338
G_YEAR data type, XmlValue, 338
G_YEAR_MONTH data type, XmlValue, 338

H
h option

command-line utilities, 50
dbxml shell command line options, 36

creating environments, 48
dbxml_dump utility, 193
dbxml_load utility, 193
dbxml_load_container utility, 192
db_archive utility, 194
db_checkpoint utility, 195
db_deadlock utility, 194
db_recover utility, 195
db_stat utility, 196

hasNext method, XmlResults, 328
hasPrevious method, XmlResults, 328
help, 36
hexadecimal character reference, XQuery, 343
hexBinary data type, XQuery, 352

■INDEX372

6668index.qxd 7/21/06 10:59 AM Page 372

HEX_BINARY data type, XmlValue, 338
hierarchical data, 18
hierarchy, XQuery

building XML to mirror conceptual
hierarchy, 92

building XML to reflect conceptual hierarchy,
93

utilizing, 94–96
history

adding input history, 37
holonym pointers, 40
hot backups, 196

db_hotbackup utility, 197
hours-from-dateTime function, XQuery, 349
hours-from-duration function, XQuery, 349
hours-from-time function, XQuery, 349
HTML

transforming XML to HTML, 226–229
XML and HTML, 199
XML for data exchange, 14

hypernym pointers
recursion, 91
Wordnet data format, 13

hyponym pointers
Wordnet data format, 13

I
i option

eval/xqilla XQuery utility, 74
ID data type, XQuery, 352
id function, XQuery, 349
IDEs (Integrated Device Electronics)

BDB XML and XQuery, 74
idiv keyword, XQuery, 346
IDREF data type, XQuery, 352
idref function, XQuery, 349
IDREFS data type, XQuery, 352
if condition, XQuery, 346

example, 79
implicit-timezone function, XQuery, 349
import module, XQuery, 346
import schema, XQuery, 346
in parameter, loadContainer method, 299
in-range function

union operator, XQuery, 98
in-scope-prefixes function, XQuery, 349
include/ distribution directory, C++ API, 104
including headers, C++ API, 231
index-of function, XQuery, 349
index parameter

addDefaultIndex method, 241
addIndex method, 239, 276
deleteDefaultIndex method, 244
deleteIndex method, 243
lookupStatistics method, 252
replaceDefaultIndex method, 257
replaceIndex method, 256
setIndexSpecification method, 258

indexes, 61–72
addDefaultIndex method, 240–241, 277

addIndex method, XmlContainer, 40, 62,
239–240

C++ API, 117
Java API, 155
Perl API, 171
PHP API, 186
Python API, 135

addIndex method, XmlIndexSpecification,
276–277

adding indexes to containers, 65–67
C++ API, 117
Java API, 155
Perl API, 171
PHP API, 186
Python API, 135

containers, indexing, 40–41
adding an index, 40
default index, 37

contains function, XQuery, 88
createIndexLookup method, 288–289
creating, 61–62
criteria for XML databases, 21
default indexes, 68
deleteDefaultIndex method, 244–245, 278
deleteIndex method, XmlContainer, 243–244

C++ API, 118
Java API, 155
Perl API, 171
PHP API, 186
Python API, 135

deleteIndex method, XmlIndexSpecification,
277

deleting, 67–68
deleting two indexes at once, 68

external references, 61
factors influencing, 61
getDefaultIndex method, 279
getIndex method, 272
getIndexNodes method, 248
getIndexSpecification method,

XmlContainer, 248–249, 258
C++ API, 117
Java API, 155
Perl API, 171
PHP API, 186
Python API, 135

getNumberOfIndexedKeys method, 332
index description, 62
index nodes, 62
index options, 62–65

key type, 64–65
node type, 64
order of options, 62
path type, 63
syntax type, 65
uniqueness, 63

index strategies, 68–70
internal entity references, 61
listIndexes command, 40
listing, 67

■INDEX 373

Find it faster at http://superindex.apress.com
/

6668index.qxd 7/21/06 10:59 AM Page 373

listing documents referenced by index
C++ API, 118
Java API, 156
Perl API, 172
PHP API, 187
Python API, 136

lookupIndex method, 252
managing container indexes, 65, 68, 117
manipulating container indexes, 62

C++ API, 118
Java API, 155
Perl API, 171
PHP API, 186
Python API, 135

matches function, XQuery, 88
next method, 280
node names, 101–102
queries against results, 102
query plans, 70–72, 99–100
reasons for using databases, 16
reindexing, 41
replaceDefaultIndex method, 257
replaceDefaultIndex method, 281
replaceIndex method, 255–256, 280
replacing, 67–68
reset method, 282
setIndex method, 272
setIndexNodes method, 261
setIndexSpecification method, 258
syntax type, 41
Wordnet index format, 12
XML, 18–20
XmlIndexLookup class, 270–275

C++ API, 118
Java API, 156
Perl API, 172
PHP API, 187
Python API, 136

XmlIndexSpecification class, 275–282
C++ API, 105
Java API, 142
Perl API, 162
PHP API, 178
Python API, 126

XQuery indexing strategy, 99–102
inequality comparison operator, XQuery, 343
input history

adding, 37
input streams

BDB XML validation on, 147, 165, 180
createInputStream method, 147
createLocalFileInputStream method, 289
createMemBufInputStream method, 289
createStdInInputStream method, 293
createURLInputStream method, 295
getContentAsXmlInputStream method, 263
loading documents with XmlManager, 110
setContentAsXmlInputStream method, 267
XmlInputStreams class, 282–284

XmlManager input stream-creation methods
C++ API, 110
Java API, 147
Perl API, 165
PHP API, 180
Python API, 129

insert-before function, XQuery, 349
installations

BDB XML, 26
instance of keyword, XQuery, 346
int data type, XQuery, 352
integer data type, XQuery, 353
integer division operator, XQuery, 346
Integrated Device Electronics (IDEs), 74
internal entity references

indexes, 61
intersect operator, XQuery, 99, 346
intersection set key

query plans, XQuery, 100
is operator, XQuery, 85, 346
isolation

DB_DEGREE_2 flag, 245, 247, 294, 303, 325
DB_DIRTY_READ flag, 245, 247, 286, 294,

303, 325
isXyz methods, XmlValue, 337
item data type, XQuery, 82, 352
iteration

getting results with XQuery, 87–88
iterations

two iterations, 88

J
Java API, 141–159

C++ API classes and methods, 141
C++ API differences, 141
class organization, 142
closing containers, 232
closing environments, 235
copying objects, 232
deleting objects, 232
environments, 144
errors and exception handling, 142–144
flags, 232
further information about, 159
garbage collection, 145, 232
general notes, 231
get_version_xyz methods, 237
loading packages, 231
opening database environment, 144
running applications, 141–142
setting error stream, 143
setting log level, 143
table of major classes, 142
thread safety, 231

Java API classes
see also API method and class reference
Environment class, 142, 144
EnvironmentConfig class, 143, 144
XmlContainer class, 142, 153–156

■INDEX374

6668index.qxd 7/21/06 10:59 AM Page 374

XmlContainerConfig class, 145, 146
XmlDocument class, 142, 156–157
XmlException class, 142
XmlIndexSpecification class, 142
XmlManager class, 145–153

creating other objects, 153
description, 142
instantiating XmlManager objects, 145
loading documents into containers,

147–148
managing containers, 145–146
preparing and executing queries on

containers, 148–151
using query results, 151–152

XmlModify class, 142, 157–159
XmlQueryContext class, 142
XmlQueryExpression class, 142
XmlResults class, 142
XmlTransaction class, 142
XmlUpdateContext class, 142
XmlValue class, 142

joins, XQuery
example, 79
two iterations, 88

K
k option

db_checkpoint utility, 195
key legend

query plans, XQuery, 100
key types

index options, 64–65
keys

getNumberOfIndexedKeys method, 332
getNumberOfUniqueKeys method, 333

keywords, XQuery, 343
KML placemark file, 97

L
L option

db_checkpoint utility, 195
db_deadlock utility, 194

l option
db_archive utility, 194
db_stat utility, 196

lang function, XQuery, 349
language bindings, 31–33

Perl bindings, 31–32
PHP bindings, 32–33
Python bindings, 32

language data type, XQuery, 353
last function, XPath, 85, 216, 220
last function, XQuery, 349
Lazy evaluation type, XmlQueryContext

C++ API, 113, 114
createQueryContext method, XmlManager,

291
DBXML_LAZY_DOCS flag, 245, 247, 303, 325
Java API, 150

Perl API, 167
PHP API, 182
Python API, 131
setEvaluationType method,

XmlQueryContext, 321
LD_LIBRARY_PATH environment variable

running applications, Java API, 141
less-than comparison operator, XQuery, 344, 346
less-than-or-equal-to comparison operator,

XQuery, 344, 346
let clause, XQuery, 80, 81, 344, 346
level parameter, setLogLevel method, 236
LEVEL_XYZ parameters

setLogLevel method, DbXml, 236
libraries

BDB XML library, 26
compiling programs, C++ API, 103
lib/ directory, C++ API, 104

library modules, XQuery, 87
lineno parameter, loadContainer method, 299
Linux

installing BDB XML on, 30
listIndex command, 67
listIndexes command, 40
lists

comma-delimited list, 199
LiveValues return type, XmlQueryContext

createQueryContext method, 291
setReturnType method, 322

loadContainer method, XmlManager, 299
loading containers, 193
loading modules, Python API, 232
local-name-from-QName function, XQuery, 349
local-name function, XPath, 220
local-name function, XQuery, 349
locking

DB_CDB_ALLDB file, 49
DB_INIT_LOCK flag, 48, 233
DB_RMW flag, 245, 247, 249, 303, 325
DB_TXN_NOWAIT flag, 294
detecting deadlocks, 194–195
setLockMode method, Java API, 269
stale locks in containers, 145

lock_detect method, DB_ENV, 194
lock_stat method, DB_ENV, 196
log files

managing logs, 193–194
permanently deleting log files, 50

logging
Berkeley DB reference guide, 197
DB_DSYNC_LOG file, 49
DB_INIT_LOG flag, 48, 234
DB_LOG_AUTOREMOVE flag, 49
DB_TXN_NOT_DURABLE flag, 286
setLogCategory method

DbXml class, 235–236
XmlManager class, 308

setLogLevel method
DbXml class, 236–237

■INDEX 375

Find it faster at http://superindex.apress.com
/

6668index.qxd 7/21/06 10:59 AM Page 375

XmlManager class, 308
setting log level

C++ API, 106
Java API, 143

logical and operator, XQuery, 345
logical or operator, XQuery, 347
log_stat method, DB_ENV, 196
long data type, XQuery, 353
lookupIndex method, XmlContainer, 252
lookupStatistics method, XmlContainer,

252–253
lower-case function, XQuery, 349
lt entity, XML, 205

M
m option

db_stat utility, 196
Mac OS X

installing BDB XML on, 30
main module, XQuery, 87
Marquess, Paul, 161
match attribute, template element, 227
matches function, XQuery, 349

arguments, 87
indexing, 88
regular expressions, 88

max function, XQuery, 349
memory pool

DB_INIT_MPOOL flag, 48, 234
Merrells, John, 1
metadata, 43–44

adding metadata to documents, 57
C++ API, 119
Java API, 156
Perl API, 172
PHP API, 187
Python API, 136

default index, 37
getMetaData command, 44
getMetaData method, 264

C++ API, 119
Java API, 157
Perl API, 173
PHP API, 188
Python API, 136, 137

getMetaDataIterator method, 264
overview of BDB XML, 4
reading metadata from documents

C++ API, 120
Java API, 157
Perl API, 173
PHP API, 188
Python API, 137

removeMetaData method, 265
setMetaData command, 43
setMetaData method

C++ API, 119
Java API, 156
Perl API, 172
PHP API, 187

Python API, 136
XmlMetaDataIterator class, 311–312

metadata node type, 64
metadata, XQuery, 89
methods

see API method and class reference
min function, XQuery, 349
minutes-from-dateTime function, XQuery, 349
minutes-from-duration function, XQuery, 349
minutes-from-time function, XQuery, 349
mod (modulo) operator, XQuery, 346
mode parameter, createContainer method, 287
modifying documents

createModify method, 290
XmlModify class, 312–317

C++ API, 105, 120–121
Java API, 142
Perl API, 162, 174
PHP API, 178, 188, 189
Python API, 126

modules, XQuery, 87, 346
import module, 346
library modules, 87
main module, 87

month-from-date function, XQuery, 349
month-from-dateTime function, XQuery, 349
months-from-duration function, XQuery, 349
multiplication operator, XQuery, 343

N
n key

query plans, XQuery, 100
n option

eval/xqilla XQuery utility, 74
Name data type, XQuery, 353
name function, XPath, 220
name function, XQuery, 349
name parameter

addIndex method, 239
addIndex method, 276
createContainer method, 285
deleteDocument method, 242
deleteIndex method, 243
dumpContainer method, 296
getDocument method, 247
loadContainer method, 299
lookupStatistics method, 252
openContainer method, 300
putDocument method, 253
removeContainer method, 305
replaceIndex method, 256
setVariableValue method, 323
verifyContainer method, 309

namespace axis, XPath, 218
namespace data type, XQuery, 352
namespace keyword, XQuery, 346
namespace-uri-for-prefix function, XQuery, 350
namespace-uri-from-QName function, XQuery,

350
namespace-uri function, XQuery, 350

■INDEX376

6668index.qxd 7/21/06 10:59 AM Page 376

namespaces
clearNamespaces method, 318
declare namespace keywords, XQuery, 345
declaring namespaces and variables

C++ API, 112
Java API, 149
Perl API, 166
PHP API, 182
Python API, 130

description, 206
getNamespace method, 320
removeNamespace method, 318
setNamespace method, 320

namespaces, XML, 206–207
avoiding namespace repetition, 207
xmlns attribute prefix, 207

navigation, XQuery, 84–85, 344
see also nodes, XQuery
“After” navigation axis, 346
ancestor keyword, 345
ancestor-or-self keyword, 345
attribute keyword, 345
axis separator, 344
child keyword, 345
descendant keyword, 345
descendant-or-self keyword, 345
following keyword, 346
following-sibling keyword, 346
navigating to a node via 2 expressions, 86
parent, 84
parent keyword, 347
parent node, 344
preceding keyword, 347
preceding-sibling keyword, 347
self keyword, 347
step operator, 344
step separator, 344
XQuery expressions

NCName data type, XQuery, 353
ne keyword, XQuery, 347
negativeInteger data type, XQuery, 353
new lines

preservation in XML elements, 204
newName parameter, renameContainer

method, 306
next method

XmlIndexSpecification class, 280
XmlMetaDataIterator class, 311

next method, XmlResults class, 329
C++ API, 114, 115, 117
Java API, 151, 152
Perl API, 168, 169, 170
PHP API, 183, 184, 185
Python API, 132, 133

Node class, DOM, 222
node containers

creating, 191
description, 51
flags, 52

NODE data type, XmlValue, 338

node data type, XQuery, 352
node function, XPath, 219

path operator, 215
node indexes

presence tests, 100
node-name function, XQuery, 350
node names

indexes, 101–102
node order tests, XQuery, 344, 345
node path type, 63

adding indexes, 66
node types

dbxml_load_container specifying, 192
DOM, 212
index options, 64

NodeContainer
C++ API, 118
Java API, 156
Perl API, 172
PHP API, 187
Python API, 136

NodeContainer constant, getContainerType
method, 246

NodeContainer type, XmlContainer class
createContainer method, 286
openContainer method, 300

NodeList class, DOM, 222
nodes

adding to previously replaced document, 55
DBXML_INDEX_NODES flag, 52, 286, 301
default indexes for, 68
getIndexNodes method, 248
getNode method, 274
getParent method, 275
index nodes, 62
navigating to, via 2 expressions, 86
setIndexNodes method, 261
setNode method, 274
setNodeContainer method, 260
setParent method, 275
union computation on sequence of, 98

nodes, XPath, 211–212
context node set, 220
description, 211
parsed DOM node tree, 213
path operator selecting all (//), 215

nodes, XQuery, 81
see also navigation, XQuery
data types, 84
difference set operator, 346
document node constructor, 345
intersect operator, 346
node equality, 346
parent node, 344
union operator, 344, 347
validate keyword, 347

NONE data type, XmlValue, 338
nonNegativeInteger data type, XQuery, 353
nonPositiveInteger data type, XQuery, 353
normalize-space function, XPath, 220

■INDEX 377

Find it faster at http://superindex.apress.com
/

6668index.qxd 7/21/06 10:59 AM Page 377

normalize-space function, XQuery, 350
normalize-unicode function, XQuery, 350
normalizedString data type, XQuery, 353
not-equal comparison operator, XQuery, 347
not function, XPath, 220
not function, XQuery, 350
NOTATION data type, XmlValue, 338
NOTATION data type, XQuery, 353
number function, XQuery, 350

O
o option

eval/xqilla XQuery utility, 74
oldName parameter, renameContainer method,

305
one-or-more function, XQuery, 350
op parameter

setHighBound method, 272
setLowBound method, 273
values, 288

open method
Db4Env class, PHP API, 178
DbEnv class, 233–234

C++ API, 107
Perl API, 163
Python API, 126

opening environments, 48
open source

criteria for XML databases, 20
openContainer command, 4, 51
openContainer method, XmlManager, 300–301

C++ API, 109, 116
Java API, 145, 146, 153
Perl API, 164, 169
PHP API, 179, 180, 185
Python API, 127, 133

operating systems
criteria for XML databases, 20

operators, XPath, 217
operators, XQuery, 85, 343
options

index options, 62–65
OQPlan (Optimized Query Plan) element, 71

XQuery, 100
or operator, XQuery, 347
Oracle

Sleepycat and, 1
order by clause, XQuery, 81, 345–347
out parameter

dumpContainer method, 296
verifyContainer method, 309

oXygen, 74

P
P key

query plans, XQuery, 100
P option

dbxml shell command line options, 36
eval/xqilla XQuery utility, 74

p option
dbxml_load_container utility, 192
db_checkpoint utility, 195

packages
importing, Perl API, 232

pagesize parameter, setDefaultPageSize
method, 308

parent axis, XPath, 218
parent elements, XML, 206
parent keyword, XQuery, 84, 347
parent node

getParent method, 275
setParent method, 275

parent node, XPath
path operator(..), 215

parent node, XQuery, 344
parentheses, XQuery, 343
parent_name parameter, lookupStatistics

method, 252
parent_uri parameter, lookupStatistics method,

252
parsing

delimited data, 199
parsing query strings, 41
Perl XML::LibXML module, 225
SAX, 229
XML parsers, 205

Partially Optimized Query Plan element,
XQuery, 100

PATH directory
compiling programs, C++ API, 103

path expressions, XQuery, 84
path operators, XPath, 214–215
path types

index options, 63
Pathan, 26

installing BDB XML on Unix, 30
compiling programs, C++ API, 104

pathnames
db_archive utility printing, 194
db_archive utility specifying, 194
db_deadlock utility printing, 195

paths, XPath, 211
peek method, XmlResults, 330
people.dbxml container, 74
Perl API, 161–175

class organization, 161–162
closing containers, 232
DbXml method taking XmlValue parameter,

161
environments, 163
errors and exception handling, 162–163
exception handling, 232
further information about, 175
general notes, 232
importing packages, 232
opening database environments, 163
parameter indicator, 231
Perl scalars, 161

■INDEX378

6668index.qxd 7/21/06 10:59 AM Page 378

running applications, 161
table of major classes, 162

Perl API classes
see also API method and class reference
C++ API classes and methods, 161
DbEnv class, 162
DbXml class, 162
XmlContainer class, 162, 169–172
XmlDocument class, 162, 172–173
XmlException class, 162
XmlIndexSpecification class, 162
XmlManager class, 163–169

creating other objects, 169
description, 162
instantiating XmlManager objects, 163
loading documents into containers, 165
managing containers, 163
preparing and executing queries on

containers, 166–167
using query results, 168–169

XmlModify class, 162, 173–174
XmlQueryContext class, 162
XmlQueryExpression class, 162
XmlResolver class, 161
XmlResults class, 162
XmlTransaction class, 162
XmlUpdateContext class, 162
XmlValue class, 162

Perl bindings, 31–32
Perl scalars, 161
Perl XML::LibXML module

reading and writing XML, 224–226
PHP API, 177–189

caution: defaulting to transactions, 179
class organization, 177–178
closing containers and freeing memory, 232
environments, 178
exception handling, 232
flags, 232
further information about, 189
general notes, 232
identifying types as arguments to methods,

232
opening database environments, 178
parameter indicator, 231
running applications, 177
table of major classes, 177
underlying C++ API methods, 178
unset method, 180
update context objects, 186

PHP API classes
see also API method and class reference
Db4Env class, 178
XmlContainer class, 177, 185–187
XmlDocument class, 178, 187–188
XmlIndexSpecification class, 178
XmlManager class, 179–184

creating other objects, 184
description, 177
instantiating XmlManager objects, 179

loading documents into containers,
180–181

managing containers, 179
preparing and executing queries on

containers, 181–183
using query results, 183–184

XmlModify class, 178, 188–189
XmlQueryContext class, 178
XmlQueryExpression class, 178
XmlResults class, 178
XmlTransaction class, 178
XmlUpdateContext class, 178
XmlValue class, 178

PHP bindings, 32–33
placemarks

KML placemark file, 97
point in time snapshots, 197
pointers

bidirectional pointers, 13
holonym pointers, 40
hypernym pointers, 13
hyponym pointers, 13
indexing XML, 18, 19

populating containers, 191–192
POQPlan element, XQuery, 100
position function, XPath, 85, 220
position function, XQuery, 350
positiveInteger data type, XQuery, 353
preceding axis, XPath, 218
preceding keyword, XQuery, 347
preceding-sibling axis, XPath, 218
preceding-sibling keyword, XQuery, 347
predicate symbol, XQuery, 344
predicates, 215
predicates, XPath, 215–217

caution: using axes with predicates, 218
following a basis, 218
using contains function in, 219

prefix option
command-line options for buildall.sh, 28

prefix parameter, setNamespace method, 320
preload command, 3
prepare method, XmlManager, 302

C++ API, 112
Java API, 148
Perl API, 166
PHP API, 181
Python API, 129
query plans, 70

presence key type, 64
presence lookup key, XQuery, 100
presence tests

node and edge indexes, 100
prestructured XML data, 17
previous method, XmlResults, 330

C++ API, 114
Java API, 151
Perl API, 168
PHP API, 183
Python API, 132

■INDEX 379

Find it faster at http://superindex.apress.com
/

6668index.qxd 7/21/06 10:59 AM Page 379

procedural languages, 226
processing-instruction data type, XQuery, 352
programming languages

criteria for XML databases, 20
prolog, XQuery, 79
prompts

getting database command prompt, 36
publicId parameter, createURLInputStream

method, 295
putDocument command, 37

overview of BDB XML, 2, 3
utilizing hierarchy, XQuery, 94

putDocument method, XmlContainer, 253–255
adding documents, 54
container operations, 52
C++ API, 110, 111, 116
Java API, 147, 153
Perl API, 165, 169
PHP API, 180, 181, 185
Python API, 129, 133
validating documents, 56

putDocument shell command
f parameter, 37
q parameter, 42
s parameter, 37
using XQuery, 42

pybsddb project
running scripts using Python API, 125

Python API, 125–139
adding document to container from local file,

129
class organization, 125–126
closing containers, 232
environments, 126–127
errors and exception handling, 126
exception handling, 232
flags, 232
general notes, 232
get_version_xyz methods, 237
loading modules, 232
Python interface, 232
table of major classes, 126
transactions, 138–139

Python API classes
see also API method and class reference
DBEnv class, 126
XmlContainer class, 126, 133–136
XmlDocument class, 126, 136–137
XmlIndexSpecification class, 126
XmlManager class, 126, 127–133
XmlModify class, 126, 137–138
XmlQueryContext class, 126
XmlQueryExpression class, 126
XmlResults class, 126
XmlTransaction class, 126
XmlUpdateContext class, 126
XmlValue class, 126

Python bindings, 32
running scripts using Python API, 125

Python iterators
classes implementing, 137

Q
q option

eval/xqilla XQuery utility, 74
q parameter, putDocument command, 42
QNAME data type, XmlValue, 338
QName data type, XQuery, 343, 353
QName function, XQuery, 350
quantification condition test, XQuery, 346
queries

createQueryContext method, 291–292
DBXML_ALLOW_AUTO_OPEN flag, 284
DB_DEGREE_2 flag, 245, 247, 294, 303, 325
getQuery method, 326
getQueryPlan method, 326
index strategies, 68
methods to browse query results, 53
performing queries on containers, 53

C++ API, 112–114
Java API, 148–151
Perl API, 166–167
PHP API, 181–183
Python API, 129–131

query results
C++ API, 114–115
Java API, 151–152
Perl API, 168–169
PHP API, 183–184
Python API, 131–133

retrieving documents, 55
XmlQueryContext class, 317–324

C++ API, 105
Java API, 142
Perl API, 162
PHP API, 178
Python API, 126

XmlQueryExpression class, 324–327
C++ API, 105
Java API, 142
Perl API, 162
PHP API, 178
Python API, 126

XmlResults class, 327–332
C++ API, 105
Java API, 142
Perl API, 162
PHP API, 178
Python API, 126

XQuery, 73–102, 343–353
querying containers, 38–40
query command, 3, 4, 38
query engine, 61
query method, XmlManager class, 302–304

C++ API, 112, 113, 114
Java API, 148, 149, 151
performing queries on containers, 53
Perl API, 166, 167, 168

■INDEX380

6668index.qxd 7/21/06 10:59 AM Page 380

PHP API, 181, 182, 183
Python API, 131

query plans, 70–72
caution: syntax as output by dbxml shell, 71

query plans, XQuery, 99–100
element descriptions, 100
key legend, 100

query strings
parsing query strings, 41

queryContext parameter, execute method, 324
queryPlan command, 41, 71
quotation marks, XQuery, 343
quote entity, XML, 205

R
R key

query plans, XQuery, 100
R option

dbxml_dump utility, 193
random record selector, XQuery, 95
range lookup key, XQuery, 100
range operator, XQuery, 347
range queries, XQuery, 96–98
Raw Query Plan element, XQuery, 100
read-only mode

DB_RDONLY flag, 51
readBytes method, XmlInputStream, 283
recovery, databases, 195

Berkeley DB reference guide, 197
catastrophic recovery, 195
criteria for XML databases, 20
DB_RECOVER flag, 48, 234

recursion, XQuery, 90–92
recursive functions

building XML to reflect conceptual hierarchy,
93

regular expressions, XQuery, 88–89
matches function, 88, 89

reindexContainer method, XmlManager, 304
reindexing, 41
relational databases

see also database servers
accessing, 7

remainders
mod (modulo) operator, 346

remove function
building XML to reflect conceptual hierarchy,

93
remove function, XQuery, 350
removeAlias method, XmlContainer, 255
removeContainer method, XmlManager,

304–305
C++ API, 110
Java API, 146
Perl API, 164
PHP API, 180
Python API, 128

removeDocument command, 38
removeMetaData method, XmlDocument, 265

removeNamespace method, XmlQueryContext,
318

renameContainer method, XmlManager,
305–306

C++ API, 110
Java API, 146
Perl API, 164
PHP API, 180
Python API, 128

replace function, XQuery, 350
replaceDefaultIndex method

XmlContainer class, 257
XmlIndexSpecification class, 281

replaceIndex method
XmlContainer class, 68, 255–256
XmlIndexSpecification class, 280

replication
criteria for XML databases, 20

reset method
XmlIndexSpecification class, 282
XmlMetaDataIterator class, 312
XmlResults class, 331

resolve-QName function, XQuery, 350
resolve-uri function, XQuery, 350
restoring databases, 196–197
results

createResults method, 292
DBXML_REVERSE_ORDER flag, 245
query results

C++ API, 114, 115
Java API, 151, 152
Perl API, 168
PHP API, 183, 184
Python API, 132

XmlResults class, 327–332
C++ API, 105
Java API, 142
Perl API, 162
PHP API, 178
Python API, 126

results, XQuery
queries against results, 102
reshaping results, 92–93

return clause, XQuery, 82
return keyword, XQuery, 347
return types

createQueryContext method, 291
getReturnType method, 322
setReturnType method, 322

reverse function
building XML to reflect conceptual hierarchy,

93
reverse function, XQuery, 350
rlwrap wrapper, 37
RMW flag

setLockMode method, 269
root element, XML, 203

element relationships, 206
root function, XQuery, 350

■INDEX 381

Find it faster at http://superindex.apress.com
/

6668index.qxd 7/21/06 10:59 AM Page 381

root node
parsed DOM node tree, 213

root node, XPath
path operator (/), 215

round function, XQuery, 350
round-half-to-even function, XQuery, 350
RPC-XML, 229–230
RPCs (Remote procedure calls), 229
RQPlan element, XQuery, 100
RSS (Really Simple Syndication)

XML for data exchange, 15
rt parameter

createQueryContext method, 291

S
s option

dbxml shell command line options, 36
dbxml_load_container utility, 192
db_archive utility, 194
db_deadlock utility, 195
serialized XML, 37

s parameter
putDocument shell command, 37

salvaging data
dbxml_dump utility, 193

sample data, XQuery, 74–75
SAX, 229
scalars, Perl, 161, 232
schemas

import schema, XQuery, 346
XML schemas, 209–210

scope
let clause, XQuery, 81

seconds-from-dateTime function, XQuery, 350
seconds-from-duration function, XQuery, 350
seconds-from-time function, XQuery, 350
select attribute, value-of element, 227
self axis, XPath, 218
self keyword, XQuery, 84, 347
semantic richness of XML, 201
sequences, XQuery, 77–78
serialized XML

placing XML document into shell as text, 37
set operations, XQuery, 98–99

difference operator, 346
except operator, 99
intersect operator, 99
union operator, 90, 98

setAdoptEnvironment method,
XmlManagerConfig, 310

setAllowAutoOpen method,
XmlManagerConfig, 311

setAllowCreate flag, XmlContainerConfig, 146
setAllowExternalAccess method,

XmlManagerConfig, 310
setAllowValidation method,

XmlContainerConfig, 260
setApplyChangesToContainers method,

XmlUpdateContext, 337

setBaseURI method, XmlQueryContext,
320–321

setContainer method, XmlIndexLookup, 271
setContent method, XmlDocument, 266

C++ API, 117
Java API, 154
Perl API, 170
PHP API, 185
Python API, 134
replacing documents, 55

setContentAsDOM method, XmlDocument, 54,
267

C++ API, 117
Java API, 154
Perl API, 170
Python API, 134

setContentAsXmlInputStream method,
XmlDocument, 54, 267

C++ API, 111
Java API, 148
Perl API, 165
PHP API, 181
Python API, 129

setDefaultCollection function,
XmlQueryContext class, 53, 319

setDefaultContainerFlags method,
XmlManager, 306

setDefaultContainerType method,
XmlManager, 52, 307

setDefaultPageSize method, XmlManager,
307–308

setEvaluationType method, XmlQueryContext,
321–322

C++ API, 113
Java API, 150
Perl API, 167
PHP API, 182
Python API, 131

setExclusiveCreate method,
XmlContainerConfig, 146

setGenerateName method,
XmlDocumentConfig, 153, 269

setHighBound method, XmlIndexLookup, 272
setIndex method, XmlIndexLookup, 272
setIndexNodes method, XmlContainerConfig,

261
setIndexSpecification method, XmlContainer,

67, 68, 258
setLazyDocs property, 157
setLockMode method, XmlDocumentConfig,

269
setLogCategory method

DbEnv class, C++ API, 106
DbXml class, 235–236
Java API, 143
XmlManager class, 308

setLogLevel method
DbEnv class, C++ API, 106
DbXml class, 236–237

■INDEX382

6668index.qxd 7/21/06 10:59 AM Page 382

Java API, 143
XmlManager class, 308

setLowBound method, XmlIndexLookup,
273–274

setMetaData command, 4, 43
setMetaData method, XmlDocument, 267

adding metadata, 57
C++ API, 119
Java API, 156
Perl API, 172
PHP API, 187
Python API, 136

setName method, XmlDocument, 268
setNamespace method, XmlQueryContext, 320
setNode method, XmlIndexLookup, 274
setNodeContainer method,

XmlContainerConfig, 260
setParent method, XmlIndexLookup, 275
setReturnType method, XmlQueryContext,

322–323
setReverseOrder method,

XmlDocumentConfig, 269
setTransactional method, XmlContainerConfig,

261
setVariableValue method, XmlQueryContext,

323–324
set_flags method, DBEnv, 49
set_xyz methods, DBEnv, 49
shells, dbxml

command line options, 36
placing XML document into shell as text,

37–38
short data type, XQuery, 353
shortcuts for commands, 38
siblings

preceding-sibling keyword, XQuery, 347
sibling elements, XML, 206

SIGINT, 192
size method, XmlResults, 332

C++ API, 114
Sleepycat, 1

BDB XML download site, 25
snapshots

duration snapshots, 197
point in time snapshots, 197

SOAP (Simple Object Access Protocol), 229–230
XML for data exchange, 15

some keyword, XQuery, 347
iteration vs. filtering, 88

some . . . in . . . satisfies conditional, XQuery, 88
sorting

order by clause, XQuery, 81
source distribution, BDB XML

directory layout, 25
source install

installing BDB XML on Windows, 27
spaces

preservation in elements, XML, 204
SQLite, 11

stale locks, 145
standard backups, 196
standards, 208
starts-with function, XPath, 220
starts-with function, XQuery, 350

arguments, 87, 88
stat method, db_stat utility, 196
statistics

db_stat utility, 196
lookupStatistics method, 252–253
XmlStatistics class, 332–333

step operator, XQuery, 344
step separator, XQuery, 344
steps

addAppendStep method, 312
addInsertAfterStep method, 313
addInsertBeforeStep method, 314
addRemoveStep method, 314
addRenameStep method, 315
addUpdateStep method, 316
XPath expressions, 217

stream parameter, putDocument method, 253
string comparisons, XQuery, 85
STRING data type, XmlValue, 338
string data type, XQuery, 353
string function, XQuery, 350
string-join function, XQuery, 350
string-length function, XQuery, 350
string syntax type, 66
string-to-codepoints function, XQuery, 350
string function, XPath, 216
Stylus Studio, 74
subexpression symbol, XQuery, 344
subsequence function, XQuery, 351
substring-after function, XQuery, 351
substring-before function, XQuery, 351
substring function, XQuery, 351
substring key type, 65
subtraction operator, XQuery, 343
sum function, XPath, 220
sum function, XQuery, 351
sync method, XmlContainer, 259
synchronous log flushing

DB_TXN_NOSYNC flag, 294, 335
DB_TXN_SYNC flag, 294, 335

synsets.dbxml container, 75
syntax types

index options, 65
systemId parameter, createURLInputStream

method, 295

T
t option

dbxml shell command line options, 36
creating environments, 48

db_deadlock utility, 194
db_recover utility, 195
db_stat utility, 196
eval/xqilla XQuery utility, 74

■INDEX 383

Find it faster at http://superindex.apress.com
/

6668index.qxd 7/21/06 10:59 AM Page 383

tabs
preservation in XML elements, 204

tags, XML
see elements, XML

template element, xsl namespace, 227
Text class, DOM, 222
text data type, XQuery, 352
text function, XPath, 216, 219
text keyword, XQuery, 347
Text node type, DOM, 212

corresponding XPath, 213
parsed DOM node tree, 213

thread safety
C++ API, 231
Java API, 231

threads
DB_THREAD flag, 286, 300

TIME data type, XmlValue, 338
time data type, XQuery, 353
timezone-from-date function, XQuery, 351
timezone-from-dateTime function, XQuery, 351
timezone-from-time function, XQuery, 351
to keyword, XQuery, 347
token data type, XQuery, 353
tokenize function, XQuery, 97, 351
toModify parameter, execute method, 317
trace function, XQuery, 351
transaction command, 44
transactional granularity

Berkeley DB reference guide, 197
transactional processing

using XmlTransaction, C++ API, 121, 122
transactions, 44–45

C++ API, 121–123
caution when container opened

transactionally, 138
caution: PHP API defaulting to transactions,

179
checkpointing transactions, 195
createTransaction method, 293–294

C++ API, 115
Java API, 153
Perl API, 169
PHP API, 184
Python API, 133

creating transactional containers, Python
API, 139

criteria for XML databases, 20
DBXML_TRANSACTIONAL flag, 51, 286, 301
db_archive utility, 193
DB_DEGREE_2 flag, 245, 247, 294, 303, 325
DB_INIT_TXN flag, 48, 234
DB_TXN_NOSYNC flag, 294
DB_TXN_SYNC flag, 294
deleting documents within transactions, 56
documents, BDB XML, 56
Python API, 138–139
reasons for using databases, 16

running applications, Perl API, 161
setTransactional method, Java API, 261
XmlTransaction class, 56, 334–336

C++ API, 105, 121–123
Java API, 142
Perl API, 162
PHP API, 178
Python API, 126

transformations, XSLT, 226–229
translate function, XQuery, 351
treat as keyword, XQuery, 347
true function, XQuery, 351
try blocks

C++ API errors/exceptions, 105
Python API errors/exceptions, 126

tuple space, XQuery, 82
txn parameter

addDefaultIndex method, 241
addIndex method, 239
createContainer method, 285
deleteDefaultIndex method, 244
deleteDocument method, 242
deleteIndex method, 243
execute method

XmlModify class, 316
XmlQueryExpression class, 324

getAllDocuments method, 245
getDocument method, 247
getIndexSpecification method, 248
lookupStatistics method, 252
openContainer method, 300
putDocument method, 253
query method, 302
removeContainer method, 305
renameContainer method, 305
replaceDefaultIndex method, 257
replaceIndex method, 256
setIndexSpecification method, 258
updateDocument method, 259
upgradeContainer method, 309

txn_checkpoint method, DB_ENV
backing up databases, 197
checkpointing transactions, 195

txn_stat method, DB_ENV
db_stat utility, 196

type declarations, XQuery, 345
type hierarchy, XQuery, 82
type parameter

createContainer method, 286
openContainer method, 300
setEvaluationType method, 321
setReturnType method, 322
XmlValue class, 338

types, XQuery
instance of keyword, 346
treat as keyword, 347
typeswitch keyword, 347

typeswitch keyword, XQuery, 347

■INDEX384

6668index.qxd 7/21/06 10:59 AM Page 384

U
U key, XQuery, 100
uc parameter, execute method, 317
unary operator, XQuery, 90
union operator, XQuery, 98, 344, 347
union set key, XQuery, 100
uniqueness index option, 63
universal set key, XQuery, 100
Unix

compiling programs, C++ API, 103
installing BDB XML on, 28–33

Unix variants, 30–31
Perl bindings, 32

unordered function, XQuery, 351
unset method, PHP API, 180
unsignedByte data type, XQuery, 353
unsignedInt data type, XQuery, 353
unsignedLong data type, XQuery, 353
unsignedShort data type, XQuery, 353
untypedAtomic data type, XQuery, 353
UNTYPED_ATOMIC data type, XmlValue, 338
update context objects

see also context parameter
createUpdateContext method, 295
PHP API, 186
XmlUpdateContext class, 336–337

updateDocument method, XmlContainer,
259–260

C++ API, 117
Java API, 154
Perl API, 170
PHP API, 185
Python API, 134
replacing documents, 55

updates
XmlUpdateContext class

C++ API, 105
Java API, 142
Perl API, 162
PHP API, 178
Python API, 126

upgradeContainer method, XmlManager,
308–309

upper-case function, XQuery, 351
uri parameter

addIndex method
XmlContainer class, 239
XmlIndexSpecification class, 276

deleteIndex method, 243
lookupStatistics method, 252
replaceIndex method, 256
setDefaultCollection method, 319
setNamespace method, 320

URIs
declare base-uri keyword, XQuery, 345
setBaseURI method, 320–321

URLs
createURLInputStream method, 295

use pragma
running applications, Perl API, 161

user-defined functions, XQuery, 86

V
V key, XQuery, 100
V option

dbxml shell command line options, 36
v option

db_archive utility, 194
db_checkpoint utility, 195
db_deadlock utility, 195
db_recover utility, 195

validate keyword, XQuery, 347
validation, 207–210

address books, 208
BDB XML on input streams, 147, 165, 180
credit card numbers, 208
DBXML_ALLOW_VALIDATION flag, 56, 286,

301
declare validation keyword, XQuery, 345
documents, BDB XML, 56
DTD (Document Type Definition), 208
setAllowValidation method, 260
XML documents, 82
XML schemas, 208, 209–210

value lookup key, XQuery, 100
value-of element, xsl namespace, 227
value parameter

lookupStatistics method, 252
next method, 329
setHighBound method, 272
setLowBound method, 273
setVariableValue method, 323
XmlValue class, 337

values
getVariableValue method, 323–324
XmlValue class, 337–342

C++ API, 105
Java API, 142
Perl API, 162
PHP API, 178
Python API, 126

variables
declare variable keyword, XQuery, 345
declaring namespaces and variables

C++ API, 112
Java API, 149
Perl API, 166
PHP API, 182
Python API, 130

vcproj file extension
Windows build file explanations, 27

verify method, DB
debugging databases, 196

verifyContainer method, XmlManager,
309–310

■INDEX 385

Find it faster at http://superindex.apress.com
/

6668index.qxd 7/21/06 10:59 AM Page 385

W
web services, 229
website architecture

with BDB XML, 22
with databases, 21

well-formedness, XML, 204–205
what method, XmlException, 270

C++ API, 106
where clause, XQuery, 81, 88, 347
white space

parsed DOM node tree, 213
preservation in elements, XML, 204

Wholedoc containers, 51
WholedocContainer

C++ API, 118
createContainer method, 286
getContainerType method, 246
Java API, 156
openContainer method, 300
Perl API, 172
PHP API, 187
Python API, 136

wikis
website architecture with BDB XML, 22

wildcards, XQuery, 344
Windows

compiling programs, C++ API, 103
installing BDB XML on, 26–28
Perl bindings, 32

Wordnet, 11–14
data format, 12
index format, 12

X
xdt namespace, XQuery

anyAtomicType data type, 84, 352
data types, 351
untypedAtomic data type, 84, 353
yearMonthDuration data type, 353

Xerces
description, 25
installing BDB XML on Unix, 29
reading and writing XML, 223–224

Xerces DOM
documents, BDB XML, 53

Xerces library
compiling programs, C++ API, 104

XHTML, 199
XML, 199–230

attributes, 203
building applications performing different

operations, 222
building XML with Perl XML::LibXML

module, 224
comments, 205
compliance with syntax rules, 205
data exchange, 14–15
data storage, 16–17
DbXml class, 235–238

C++ API, 105

default XML entities, 205
defining direction for query, 217
elements, 201, 203

relationships, 206
hierarchical data, 18
indexing XML, 18–20
namespaces, 206–207
parsing XML, 229
performing operations non-locally, 229
purpose of, 199
structure of XML files, 201
tags, 201
transforming XML to HTML, 226–229
using processors other than BDB XML, 222
validation, 207–210
well-formedness, 204–205
writing XML using DOM interface, 222
XML and HTML, 199
XPath, 210–212, 214–220

XML comment constructor, XQuery, 344
XML data, 199–203

semantic richness of, 201
XML version of CSV, 200

XML databases
criteria for high-performance, 20–21
prestructured XML data, 17

XML declaration, 204
XML documents

see also documents
extension for, 201
placing into shell as text, 37–38
querying, 211
validation, 82

XML DOM, 212–214, 221–226
DOM classes with attribute and method

examples, 222
reading and writing XML, 223–226

Perl XML::LibXML module, 224–226
Xerces C++, 223–224

XML element constructor, XQuery, 344
XML parsers

forcing to ignore element content, 205
Xerces C++, 25

XML processor, 221
XML schemas, 209–210

validation processes, 208
XML-RPC

XML for data exchange, 15
XmlContainer class, 238–260

addAlias method, 238
C++ API, 117
Java API, 155
Perl API, 171
PHP API, 186
Python API, 135

addDefaultIndex method, 68, 240–241
addIndex method, 65, 239–240
C++ API, 105, 116–119
container operations, 52
default indexes for containers, 68

■INDEX386

6668index.qxd 7/21/06 10:59 AM Page 386

deleteDefaultIndex method, 68, 244–245
deleteDocument method, 241–242

C++ API, 116
Java API, 153
Perl API, 170
PHP API, 185
Python API, 134

deleteIndex method, 67, 243–244
C++ API, 118
Java API, 155
Perl API, 171
PHP API, 186
Python API, 135

getAllDocuments method, 245–246
getContainerType method, 246
getDocument method, 246–248

C++ API, 116, 117
Java API, 148
Perl API, 165, 170
PHP API, 181, 185
Python API, 129

getIndexNodes method, 248
getIndexSpecification method, 248–249, 258

C++ API, 117
Java API, 155
Perl API, 171
PHP API, 186
Python API, 135

getManager method, 249
getName method, 250
getNumDocuments method, 250
getPageSize method, 251
Java API, 142, 153–156
lookupIndex method, 252
lookupStatistics method, 252–253
managing container indexes

C++ API, 117
Java API, 155
Perl API, 171
PHP API, 186
Python API, 135

Perl API, 162, 169–172
PHP API, 177, 185–187
putDocument method, 253–255

container operations, 52
C++ API, 110, 111, 116
Java API, 147, 153
Perl API, 165, 169
PHP API, 180, 181, 185
Python API, 129, 133

Python API, 126, 133–136
removeAlias method, 255
replaceDefaultIndex method, 257
replaceIndex method, 68, 255, 256
setIndexSpecification method, 258
sync method, 259
updateDocument method, 259–260

C++ API, 117
Java API, 154
Perl API, 170

PHP API, 185
Python API, 134

XmlContainerConfig class, Java API, 145, 146,
260–261

setAllowCreate flag, 146
setAllowValidation method, 260
setExclusiveCreate, 146
setIndexNodes method, 261
setNodeContainer method, 260
setTransactional method, 261

XmlDocument class, 261–269
C++ API, 105, 119
createDocument method, 287
documents, BDB XML, 53
fetchAllData method, 261
getContent method, 262

C++ API, 117
Java API, 154
Python API, 134

getContentAsDOM method, 263
C++ API, 117

getContentAsEventReader method
C++ API, 123

getContentAsXmlInputStream method, 263
getMetaData method, 264

C++ API, 119
Java API, 157
Perl API, 173
PHP API, 188
Python API, 136, 137

getMetaDataIterator method, 264
getName method, 265

C++ API, 114
Java API, 151
Perl API, 168
PHP API, 183
Python API, 132

Java API, 142, 156–157
Perl API, 162, 172–173
PHP API, 178, 187–188
Python API, 126, 136–137
removeMetaData method, 265
setContent method, 266

C++ API, 117
Java API, 154
Perl API, 170
PHP API, 185
Python API, 134

setContentAsDOM method, 267
C++ API, 117
Java API, 154
Perl API, 170
Python API, 134

setContentAsXmlInputStream method, 267
C++ API, 111
Java API, 148
Perl API, 165
PHP API, 181
Python API, 129

■INDEX 387

Find it faster at http://superindex.apress.com
/

6668index.qxd 7/21/06 10:59 AM Page 387

setMetaData method, 267
C++ API, 119
Java API, 156
Perl API, 172
PHP API, 187
Python API, 136

setName method, 268
XmlDocumentConfig class, Java API, 269–270

setGenerateName method, 269
setLockMode method, 269
setReverseOrder method, 269

XmlEventReader class, C++ API, 123
XmlEventWriter class, C++ API, 123
XmlException class, 270

C++ API, 105
getDbError method, 270
getExceptionCode method, 270
Java API, 142
Perl API, 162
what method, 270

C++ API, 106
XmlIndexLookup class, 270–275

execute method, 270
getContainer method, 271
getHighBound method, 272
getIndex method, 272
getLowBound method, 273
getNode method, 274
getParent method, 275
listing documents referenced by index

C++ API, 118
Java API, 156
Perl API, 172
PHP API, 186
Python API, 135

managing container indexes
C++ API, 118
Java API, 156
Perl API, 172
PHP API, 187
Python API, 136

setContainer method, 271
setHighBound method, 272
setIndex method, 272
setLowBound method, 273–274
setNode method, 274
setParent method, 275

XmlIndexSpecification class, 275–282
addDefaultIndex method, 277
addIndex method, 276–277
adding indexes, 66, 67
C++ API, 105
default indexes for containers, 68
deleteDefaultIndex method, 278
deleteIndex method, 277
deleting indexes, 68
find method, 279
getDefaultIndex method, 279
Java API, 142
listing indexes, 67

managing container indexes
C++ API, 118
Java API, 155
Perl API, 171
PHP API, 186
Python API, 135

next method, 280
Perl API, 162
PHP API, 178
Python API, 126
replaceDefaultIndex method, 281
replaceIndex method, 280
reset method, 282

XmlInputStream class, 282–284
C++ API, 110, 111, 231
curPos method, 282
Java API, 147, 148, 232
Perl API, 165
PHP API, 180, 181
Python API, 128, 129
readBytes method, 283
setContentAsXmlInputStream method, 267

XmlManager class, 59, 284–310
C++ API, 105, 108–115
closing environments, 48
constructor, 49, 284–285
createContainer method, 285–287

C++ API, 109, 116
Java API, 145, 153
Perl API, 164, 169
PHP API, 179, 180, 185
Python API, 127, 128, 133

createDocument method, 287
C++ API, 111, 115
Java API, 148
Perl API, 165
PHP API, 181
Python API, 129

createIndexLookup method, 288–289
C++ API, 115, 118
Java API, 153, 156
Perl API, 169, 172
PHP API, 184, 186
Python API, 133, 135

createInputStream method, Java API, 147
createLocalFileInputStream method, 289

C++ API, 110
Java API, 147
Perl API, 165
PHP API, 180, 181
Python API, 129

createMemBufInputStream method, 289
C++ API, 110
Java API, 147
Perl API, 165
PHP API, 180
Python API, 129

createModify method, 290
C++ API, 120
Java API, 158

■INDEX388

6668index.qxd 7/21/06 10:59 AM Page 388

Perl API, 173
PHP API, 188
Python API, 137

createQueryContext method, 291–292
createResults method, 292
createStdInInputStream method, 293

C++ API, 110
createTransaction method, 293–294

C++ API, 115, 122
Java API, 153
Perl API, 169
PHP API, 184
Python API, 133, 139

createUpdateContext method, 295
createURLInputStream method, 295

C++ API, 110
Java API, 147
Perl API, 165
PHP API, 180
Python API, 129

createXyz methods
C++ API, 115
Java API, 153
Perl API, 169
PHP API, 184
Python API, 133

database environments
C++ API, 107
Java API, 144
Perl API, 163
PHP API, 178
Python API, 126–127

delete method, Java API, 145
dumpContainer method, 296–297
error stream debugging, Java API, 143
existsContainer method, 297
getAllDocuments method, 52
getDbEnv method, 297
getDefaultContainerFlags method, 306
getDefaultContainerType method, 307
getDefaultPageSize method, 307
getHome method, 298
getManager method, 249
input stream creation methods

C++ API, 110
Java API, 147
Perl API, 165
PHP API, 180
Python API, 129

instantiating XmlManager objects
C++ API, 108
Java API, 145
Perl API, 163
PHP API, 179
Python API, 127

Java API, 142, 145–153
loadContainer method, 299
loading documents into containers

C++ API, 110–111
Java API, 147–148

Perl API, 165
PHP API, 180–181
Python API, 128–129

managing containers
C++ API, 108–110
Java API, 145–146
Perl API, 163
PHP API, 179
Python API, 127

managing environments
Perl API, 163
PHP API, 178

openContainer method, 300–301
C++ API, 109, 116
Java API, 145, 146, 153
Perl API, 164, 169
PHP API, 179, 180, 185
Python API, 127, 133

Perl API, 162, 163–169
PHP API, 177, 179–184
prepare method, 70, 302

C++ API, 112
Java API, 148
Perl API, 166
PHP API, 181
Python API, 129

preparing and executing queries
C++ API, 114
Java API, 148–151
Perl API, 166–167
PHP API, 181–183
Python API, 129–131

Python API, 126, 127–133
query method, 53, 70, 302–304

C++ API, 112, 113, 114
Java API, 148, 149, 151
Perl API, 166, 167, 168
PHP API, 181, 182, 183
Python API, 131

reindexContainer method, 304
removeContainer method, 304–305

C++ API, 110
Java API, 146
Perl API, 164
PHP API, 180
Python API, 128

renameContainer method, 305–306
C++ API, 110
Java API, 146
Perl API, 164
PHP API, 180
Python API, 128

setDefaultContainerFlags method, 306
setDefaultContainerType method, 307
setDefaultPageSize method, 307–308
setLogCategory method, 308

Java API, 143
setLogLevel method, 308

Java API, 143
upgradeContainer method, 308–309

■INDEX 389

Find it faster at http://superindex.apress.com
/

6668index.qxd 7/21/06 10:59 AM Page 389

using query results
C++ API, 114–115
Java API, 151–152
Perl API, 168–169
PHP API, 183–184
Python API, 131–133

verifyContainer method, 309–310
XmlManagerConfig class, Java API, 310–311

setAdoptEnvironment method, 310
setAllowAutoOpen method, 311
setAllowExternalAccess method, 310

XmlMetaDataIterator class, 311–312
getMetaDataIterator method, 264
next method, 311
reset method, 312

XmlModify class, 312–317
addAppendStep method, 312

C++ API, 120
Java API, 158
Perl API, 174
PHP API, 188
Python API, 137

addInsertAfterStep method, 313
addInsertBeforeStep method, 314
addRemoveStep method, 314
addRenameStep method, 315
addUpdateStep method, 316
C++ API, 105, 120–121
createModify method, 290
description, 59
execute method, 316–317

C++ API, 121
Java API, 158
Perl API, 174
PHP API, 189
Python API, 138

Java API, 142, 157–159
modifying documents programmatically, 55

violating associated DTD/schema without
error, 56

partially modifying documents
C++ API, 117
Java API, 154
Perl API, 171
PHP API, 186
Python API, 135

Perl API, 162, 173–174
PHP API, 178, 188–189
Python API, 126, 137–138

xmlns attribute prefix, 207
XmlQueryContext class, 317–324

C++ API, 105
clearNamespaces method, 318
collection method, C++ API, 112
createQueryContext method, 291–292
executing queries on containers

C++ API, 112, 113
Java API, 148, 149, 150
Perl API, 166, 167

PHP API, 181, 182
Python API, 129, 130

getBaseURI method, 320
getDefaultCollection method, 319
getEvaluationType method, 321
getNamespace method, 320
getReturnType method, 322
getVariableValue method, 323

Java API, 142
Perl API, 162
PHP API, 186
Python API, 126

query evaluation types
C++ API, 113
Java API, 150
Perl API, 167
PHP API, 182
Python API, 131

removeNamespace method, 318
setBaseURI method, 320–321
setDefaultCollection method, 319
setEvaluationType method, 321–322

C++ API, 113
Java API, 150
Perl API, 167
PHP API, 182
Python API, 131

setNamespace method, 320
setReturnType method, 322–323
setVariableValue method, 323–324

XmlQueryExpression class, 324–327
C++ API, 105
execute method, 324–326
executing queries on containers

C++ API, 112, 113
Java API, 148
Perl API, 166
PHP API, 181
Python API, 129

getQuery method, 326
getQueryPlan method, 326
Java API, 142
Perl API, 162
PHP API, 178
prepare method, XmlManager, 302
Python API, 126

XmlQueryExpression parameter
modifying documents programmatically, 55

XmlResolver class, Perl API, 161
XmlResults class, 327–332

add method, 327
C++ API, 105
description, 59
hasNext method, 328
hasPrevious method, 328
Java API, 142
methods to browse query results, 53
next method, 329
peek method, 330

■INDEX390

6668index.qxd 7/21/06 10:59 AM Page 390

Perl API, 162
PHP API, 178
previous method, 330
Python API, 126
queries against results, 102
reset method, 331
retrieving documents, 54
size method, 332
using query results

C++ API, 114–115
Java API, 151–152
Perl API, 168–169
PHP API, 183–184
Python API, 131–133

xmlspace
declare xmlspace keyword, XQuery, 345

XmlStatistics class, 332–333
getNumberOfIndexedKeys method, 332
getNumberOfUniqueKeys method, 333

XmlTransaction class, 334–336
abort method, 334

C++ API, 122
C++ API, 105, 121–123
commit method, 334–335

C++ API, 122
createChild method, 335
documents, BDB XML, 56
getDbTxn method, 336
Java API, 142
Perl API, 162
PHP API, 178
Python API, 126

XmlUpdateContext class, 336–337
C++ API, 105
createUpdateContext method, 295
getApplyChangesToContainers method,

337
Java API, 142
Perl API, 162
PHP API, 178
Python API, 126
setApplyChangesToContainers method, 337

XmlValue class, 337–342
asDocument method, 53
asXyz methods, 337
C++ API, 105
getXyz methods, 337
isXyz methods, 337
Java API, 142
Perl API, 162
PHP API, 178
Python API, 126
retrieving documents, 55
storing values, C++ API, 104

XmlValue parameter, DbXml method, 161
XML::LibXSLT, 224
XPath, 210–212, 214–220

axes, 217–219
conditional statements, 215

contains function, 69
contexts, 214
functions, 219–220
last function, 216
node function, 215
nodes, 211–212
operators, 217
overview of BDB XML, 3
parsed DOM node tree and XPath for node,

213
path operators, 214–215
paths, 211
predicates, 215–217

using elements or attributes, 214
steps, 217
string function, 216
text function, 216
using XQuery, 41
XQuery and, 75–76

XPath processors
Pathan, 26

xqilla command-line tool, 73
options, 74

XQuery, 73–102, 343–353
clauses, 80–82

for, 80
let, 81
order by, 81
return, 82
where, 81

comparisons, 85–86
complete XQuery example, 78–80
criteria for XML databases, 20
data types, 82–84, 351–353
DBXML_ALLOW_EXTERNAL_ACCESS flag,

284
default container, 53
description, 73, 76
eval command-line tool, 73
execute method, 324–326
expressions, 76–77, 343–347

CDATA section constructor, 344
operators/keywords/symbols, 343
XML comment constructor, 344
XML element constructor, 344

FLWOR expressions, 42, 80–82
functions, 347–351
getting results with XQuery, 87–99

iteration vs. filtering, 87–88
querying for metadata, 89
querying multiple data sources, 90
range queries, 96–98
recursion, 90–92
regular expressions, 88–89
reshaping results, 92–93
set operations, 98–99
utilizing hierarchy, 94–96

indexing strategy and, 99–102
Integrated Device Electronics, 74

■INDEX 391

Find it faster at http://superindex.apress.com
/

6668index.qxd 7/21/06 10:59 AM Page 391

introduction, 73
modules, 87
navigation, 84–85
node names and wildcards, 101, 102
nodes, 81
overview of BDB XML, 3, 4
preparing and executing queries on

containers
C++ API, 112–114
Java API, 148–151
Perl API, 166–167
PHP API, 181–183
Python API, 129–131

queries against results, 102
query plans, 99–100
sample data, 74–75
sequences, 77–78
set operations, 98–99
tuple space, 82
user-defined functions, 86
using, 41–43
using query results, C++ API, 114
XML inside, 77
XPath expressions, 75–76

XQuery body, 79
XQuery code, 38
XQuery package, 26, 30
xquery parameter, query method, 302
XQuery prolog, 79

xs namespace
data types, XQuery, 351, 352–353

xsl namespace, XSLT, 227
apply-templates element, 227
template element, 227
value-of element, 227

XSLT, 226–229
contains function, XPath, 229
current function, XPath, 229
current node, XPath, 228
performing transformations from command

line, 227
versions of, 226
xsl namespace, 227

xsltproc utility
XSLT transformations, 227

Y
year-from-date function, XQuery, 351
year-from-dateTime function, XQuery, 351
year-from-duration function, XQuery, 351
yearMonthDuration data type, XQuery, 353
YEAR_MONTH_DURATION data type,

XmlValue, 338

Z
z option

db_stat utility, 196
zero-or-one function, XQuery, 351

■INDEX392

6668index.qxd 7/21/06 10:59 AM Page 392

	The Definitive Guide to Berkeley DB XML
	Table of Content
	Chapter 1 A Quick Look at Berkeley DB XML
	Chapter 2 The Power of an Embedded XML Database
	Chapter 3 Installation and Configuration
	Chapter 4 Getting Started
	Chapter 5 Environments, Containers, and Documents
	Chapter 6 Indexes
	Chapter 7 XQuery with BDB XML
	Chapter 8 BDB XML with C++
	Chapter 9 BDB XML with Python
	Chapter 10 BDB XML with Java
	Chapter 11 BDB XML with Perl
	Chapter 12 BDB XML with PHP
	Chapter 13 Managing Databases
	Appendix A XML Essentials
	Appendix B BDB XML API Reference
	Appendix C XQuery Reference
	Index

